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Abstract

This paper provides a quantitative assessment of the effects of input and output prices on French GHG

emissions from Agriculture, Forestry and other Land Use (AFOLU) at the Departement level (NUTS2

regions). Four emission categories are considered: (i) N2O emissions from the use of synthetic fer-

tilizers, (ii) CH4 emissions from enteric fermentation, (iii) N2O and CH4 emissions from manure

management and spreading (iv) CO2 emissions from Land Use, Land Use Changes, and Forestry.

To account for both time-invariant unobserved heterogenity across Departement and spatial correla-

tion, we estimate a random-effect spatial error model in order to assess the impact of crop, livestock,

wood, and land prices on each emission category, as well as on aggregated emissions. Our findings

are threefold. First, prices are found to have a significant impact on GHG emissions, although sign

and magnitude vary from one emission category to the other. Second, the estimated price effects are

clearer when emission categories are analyzed separately rather than aggregated. Third, our results

underline the importance of spatial dimension in the study of GHG emissions from AFOLU. Our re-

sults suggest that price effects should be taken into account in the design of public policies aimed at

reducing emissions or enhancing carbon sinks in these sectors.
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1. Introduction

Sources of greenhouse gases (GHG) emissions are not restricted to fossil fuel combustion for

energy use. Agriculture, Forestry and other Land Use (AFOLU) also play a major role in the accu-

mulation of GHG in the atmosphere through emissions of non-CO2 GHG due to farming activities,

release of carbon into the atmosphere due for instance to deforestation, or carbon sequestration in

soils and above-ground biomass. In the recent years, these sources/sinks have been under increasing

scrutiny because of both their weight in global emissions (about a third according to IPCC, 2007) and

the role they could play in a cost-effective mitigation policy (Vermont and De Cara, 2010). In France,

agricultural emissions of non-CO2 GHG account for about a fifth of total French GHG emissions,

while land use, land use change and forestry’ (LULUCF) activities represent a net sink that offsets

14% of French total emissions (CITEPA, 2010).

AFOLU sources and sinks result from economic decisions in terms of input use (nitrogen fertilizer,

feed), output level (wood harvest, milk production), and land use allocation (conversions from/to crop,

grass, and forestland). Changes in input and output prices therefore impact the level of net emissions

with possibly contrasted effects on the various emission categories. AFOLU emissions have played

a major role in the decline of total French GHG emissions from 1990 to 2005, with the decrease of

agricultural GHG sources and the strengthening of the LULUCF net sink outpacing the changes in

emissions in the rest of the economy (CITEPA, 2010). In the recent period, characterized by higher

agricultural prices, the contribution of these sectors to the decrease in total emissions is less clear.

Given the large variability in agricultural prices observed in the recent years and the ambitious GHG

abatement targets currently contemplated in the EU, the quantitative assessment of these price effects

is of great policy importance in determining the mitigation effort that can be expected from AFOLU.

The objective of this paper is to shed some quantitative light on this issue.

A first strand of literature focuses on mitigation costs and potential in agriculture and/or LULUCF

(McCarl and Schneider, 2001; Pérez Domínguez et al., 2009; De Cara and Jayet, 2011). These papers

usually rely on sector economic models of agriculture and/or forestry calibrated for given technolog-

ical and market conditions. In these papers, the relationship between prices and emissions is implicit

and the focus is on how a policy instrument–typically an emission tax–affects revenues, output levels,

land use, and net emissions. A second strand of literature uses econometric techniques to estimate the

economic determinants of land-use decisions, from which GHG sources and sinks can then be calcu-

lated. Examples of this approach can be found in Lubowski et al. (2006) for plot-level data estimations

and in Plantinga et al. (1999) for an aggregated land-use share model. The scope is usually restricted
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to LULUCF emissions. Spatial effects are usually overlooked in these models.1 Recent developments

in spatial econometrics provide methods for accounting for such spatial effects in land-use models, in

particular through the use of random effect spatial error models (Chakir and Le Gallo, 2011). See Lee

and Yu (2010) for a recent overview on the estimation of spatial panel models.

In this paper, we estimate reduced form models of the four main French GHG sources/sinks from

AFOLU at the Departement2 level. An earlier exploratory spatial data analysis (Chakir et al., 2011)

shows strong evidence of global and local spatial autocorrelation in French AFOLU sources/sinks.

To the best of our knowledge, spatial autocorrelation and unobserved heterogeneity have not been

taken into account in the previous literature on GHG emissions. Ignoring spatial correlation and het-

erogeneity due to the random Departement effects may result in inefficient estimates and misleading

inference, as shown in Chakir and Le Gallo (2011). This paper is an attempt to fill this gap by using

a random effect spatial error model (RE-SEM) that captures both time-invariant heterogeneity across

Departements and spatial effects that may arise from omitted variables that have a spatial structure.

The remainder of the paper is structured as follows. In section 2, we present the econometric

model. The data are presented in section 3. Estimation results, predictions, and simulations are

presented and discussed in section 4. Section 5 concludes.

2. Econometric model

The model used in this paper is a reduced-form model of French GHG sources/sinks from AFOLU

at the Departement level. It allows to control for both individual heterogeneity and spatial correlation

across Departements. The GHG emissions in category m, Departement i, and time t is denoted by

ymit. We assume that ymit is generated according to the following model:

ymit = xmitβm + umit, (1)

umit = µmi + εmit, (2)

εmit = λm

N∑
j=1

wi jεm jt + vmit, (3)

where xmit is a k×1 vector of observed individual specific regressors on the ith cross-section unit at time

t (i = 1, ...,N and t = 1, ...,T ), wi j is the generic element of a nonnegative, N×N spatial-weight matrix

W, µmi is the random Departement effect assumed to be IID(0, σ2
µm

), εmit is the spatially autocorrelated

1Lubowski et al. (2006) have used spatial sampling, which is an ad hoc correction of spatial effects.
2The Departement is an administrative geographic division in France, which is equivalent to the European NUTS2

classification (Nomenclature of Territorial Units for Statistics, 96 Departements in mainland France).
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error term, λm is the spatial autocorrelation coefficient, and vmit is an IID error term with zero mean

and variance σ2.

The random effect specification assumes that E(µmixmit) = 0, and E(µmivmit) = 0 for all i, t and

m. If the hypothesis that the individual-specific component is orthogonal to the explanatory variables

does not hold, estimates from the random effects model suffer from possible bias due to the correlation

between the error term and the regressors. In the empirical section we will test this hypothesis using

Hausman test statistics.

In our model, spatial autocorrelation can arise from two possible sources (see LeSage and Pace,

2009, for further motivation of spatial econometric models). First, it may arise from unobservable

latent variables that are spatially correlated. Omitted variables that are spatially correlated can result in

an estimation bias as soon as they are also correlated with one or more of the observed spatial variables.

In our case, this may be due to underlying pedo-climatic characteristics (e.g. dairy production tends

to take place in rainy areas, cereal production is located in plains, etc.) that are correlated over space.

Moreover, the geographic distribution of agricultural systems are partly the consequences of historical

and institutional determinants (e.g. the location of intensive livestock production is partly linked to

infrastructure such as harbor facilities for importing soybeans, the production of vegetables tends to be

close to consumption centers, etc.). Second, it may arise because of the measurement error spillovers

across neighboring boundaries or because of the scale mismatch and the inherent need to integrate data

from different scales. For example, the data about fertilizers delivery at the Departement level do not

always reflect the location where these fertilizers are used. This is particularly true when deliveries are

made to harbors or distribution organizations, which then distribute fertilizers to other Departements.

The spatial weight matrix used in this paper is the Gabriel Neighbors matrix (Matula and Sokal,

1980). Any two points are considered to be Gabriel neighbors if the enclosing circle formed with the

distance between these two points as diameter contains no other point.3 The matrix W is constant over

time.

Two main approaches have been developed in the literature to estimate panel data models that

include spatially correlated error terms: one based on maximum likelihood (Anselin, 1988; Baltagi

et al., 2003; Elhorst, 2003), and another relying on method of moments techniques (Kapoor et al.,

2007). In the present paper, the maximum likelihood approach is used.

3An alternative (Delauney) weight matrix has also been tested. The estimation results were found to be robust to the
choice of the weight matrix.
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Consider equation (4) in matrix form (index m is omitted):

y = Xβ + u (4)

y and u are of dimension NT × 1, X is NT × K, β is K × 1. The observations are sorted first by

time t and then by spatial units i, i.e., y′ = (y11, ..., y1N , ..., yT1, ...yT N)

Equation (2) can be rewritten in vector form as:

u = (iT ⊗ IN) + [IT ⊗ B−1]v (5)

with B = IN − λW, iT is a vector of ones of dimension T , IT is an identity matrix of dimension T and

⊗ denotes the Kronecker product. Using results in Anselin (1988), the log-likelihood function of the

spatial random effects model is

L = −
NT
2

ln2πσ2
v −

1
2

ln[|TφIN + (B′B)−1|] +
T − 1

2
ln|B′B| −

1
2σ2

v
e′Σ−1

u u (6)

with u = y − Xβ, φ =
σ2
µ

σ2
v

and

Σ−1
u = JT ⊗

(
TφIN + (B′B)−1

)−1
+ ET ⊗ (B′B) (7)

with JT = JT/T , ET = IT − JT , JT is a matrix of ones of dimension T .

Following Elhorst (2003), the parameters β and σ2
v can be computed from their first-order max-

imizing conditions. The parameters φ and λ given β and σ2
v are obtained by numerical methods as

the equations cannot be solved analytically. Elhorst (2003) proposes a two-stage iterative procedure

whereby β̂ and σ̂2
v are computed by setting initial values for φ and λ in a first stage. In the second

stage, φ and λ are estimated by maximizing the concentrated log-likelihood.

3. Data

3.1. GHG Emissions from AFOLU

3.1.1. Agricultural emissions

Three agricultural emission categories are distinguished: (i) N2O emissions from the use of syn-

thetic fertilizers (EMNITR), (i) CH4 emissions from enteric fermentation (EMFERM), (iii) N2O and

CH4 emissions from manure management and spreading (EMMANU)4.

4CH4 emissions from rice are neglected as they are very small in France.
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Note that this classification slightly differs from that prescribed by the IPCC for establishing emis-

sion inventories in which the category 4D (emissions from agricultural soils) pools together emissions

resulting from both synthetic and organic nitrogen applications. Our classification explicitly distin-

guishes these two nitrogen sources. Emissions from the use of synthetic fertilizers are thus unam-

biguously related to crop production, whereas emissions from manure management and spreading are

related to both livestock and crop production. Emissions from enteric fermentation are directly linked

to livestock production. Otherwise, the computation of emissions follows closely the methodology

used by the CITEPA (2010) to establish the French GHG inventories at the national scale. Emissions

are calculated by multiplying activity variables (nitrogen applied, animal numbers, etc.) by emission

factors specific to each emission category. Emissions are calculated at the Departement level5, which

is the finest resolution available.

Despite the complexity of the biological processes involved in emissions from the use of syn-

thetic fertilizers (EMNITR), the methodology used by the IPCC remains relatively simple. Nitrogen

quantities at the Departement level (1990-2007) are taken from UNIFA (2009) and multiplied by the

emission factors used in CITEPA (2010). These factors account for the shares of applied nitrogen that

are leached and volatilised. Emissions factors are constant over time and space.

CH4 emissions from enteric fermentation (EMFERM) are calculated by using animal numbers

(taken from AGRESTE, 2011b) and animal-specific emission factors (for dairy cattle, non-dairy cat-

tle, sheep, goats, horses and swines). The emission factor associated to dairy cattle depends on

milk yield (each additional liter of milk yield leads to 0.01 kgCH4.hd−1.yr−1 with a minimum of

55.7 kgCH4.hd−1.yr−1). This emission factor thus varies over time and space according to the average

milk yield at the Departement level (taken from AGRESTE, 2011b). The emission factor associated

to non-dairy cattle varies according to the herd composition at the Departement level. The emission

factors associated to the remaining animal categories are constant over time and space.

Emissions from manure (EMMANU) include emissions occurring during manure storage (N2O

and CH4) and N2O (direct and indirect) emissions due to manure spreading on agricultural soils. N2O

emissions related to manure storage and management depends on the amount of nitrogen produced

by animals and the manure management system (solid or liquid). Nitrogen quantities produced are

calculated by multiplying livestock numbers and per-head nitrogen quantity produced by each animal

category (CITEPA, 2010). The share of nitrogen managed under each management system is based

on the average national distribution of solid and liquid management systems as no information was

5Departement 2A and 2B are aggregated into one, six Departements (78, 91, 95, 92, 93, 94) are aggregated into one
single region.
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available at a finer resolution level. Nitrogen quantities managed under each management system

are then multiplied by the respective emission factors from CITEPA. The emission factors related to

CH4 emissions from manure management and storage is specific to each animal category (emission

factors in kgCH4.head−1). N2O emissions (direct and indirect) that result from the nitrogen directly

excreted by animals on pastures or spread on agricultural soils after storage, are calculated using the

same methodology as N2O emissions from the use of synthetic fertilizers. Total agricultural emissions

(EMAGRI) are computed as the sum of the three agricultural emission sources (EMNITR, EMMANU,

EMFERM).

Emissions are converted into tCO2eq using Global Warming Potential (GWP, Solomon et al.,

2007). Each ton of CH4 corresponds to 25 tCO2eq, each ton of N2O to 298 tCO2eq. Emissions are

normalized by the total area of the respective Departement.

Over the 1990-2007 period, emissions from manure management and spreading represent 42%

of total agricultural emissions, emissions from enteric fermentation about one third, emissions from

the use of synthetic fertilizers around 23%. Over the eighteen-year period, the cumulative emissions

from these three sources amount to 1.8 GtCO2eq. Figure 2 (in Appendix) shows the evolution of

the three agricultural emission categories over the period Between 1990 and 2007, emissions from

enteric fermentation and manure management and spreading have decreased by 9.8% and 11.8%,

respectively. Emissions from the use of synthetic fertilizers show a greater variability over the period.

Figure 3 (in Appendix) shows the spatial distribution of 1990-2007 cumulative emissions by category.

The distribution of each emission category shows a clear polarization between high- (north-west and

center for EMMANU and EMFERM, north and west for EMNITR) and low-emission regions.

3.1.2. LULUCF sources and sinks

Similarly to what is done for agricultural emissions, net emissions from LULUCF (EMLUCF)

are calculated by multiplying activity variables by emission factors. In this case, activity variables

correspond to areas changing from one land use to another between year t − 1 and t. Each pair of land

uses (i, k) is associated with a region-specific emission factor (in tCO2eq.ha−1.an−1) that corresponds

either to the source (+) or sink (-) of CO2 due to the conversion of one hectare from i in year t − 1 to

k in year t.

Land-use data are taken from TERUTI (AGRESTE, 2004), in which 550,903 points throughout

mainland France are surveyed on a yearly basis (in June). Each point is associated to one land-use

category (among 81 categories). These data were used to calculate yearly land use changes for each

observed point and each pair (i, k) among the nine following categories: coniferous forest, decidious

forest, poplar, mixed forest, cropland, pastures, urban, wetlands, other uses. These categories are
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derived from physical and functional criteria used in the TERUTI land use classification. Land-use

change for each pair (i, k) was then aggregated at the Departement level. Region-specific emission

factors have been obtained from CITEPA. These factors take into account carbon stock changes both

in biomass and soils and vary both over time and space.

Total net emissions from land-use change and forestry at the Departement level are calculated

over the 1993-2003 period6 and normalized by the total area of the respective Departement. EMNET

denotes the total net emissions from all AFOLU emission categories (EMAGRI+EMLUCF).

Figure 2 shows the evolution of the average per-ha sequestration rate (the opposite of EMLUCF,

in tCO2eq.ha−1.yr−1). Over this period, emissions from LULUCF show a greater variability than the

three agricultural emission categories. The steady increase of the sequestration rate is mainly due to

the biomass growth in existing forests and, more marginally, to the increase of forest areas over the

period. The peak for the year 2000 corresponds to Lothar and Martin storms (December 1999), which

resulted in the destruction of large forest areas in France. Again, Figure 3 (appendix) shows a net

polarization between high- (in the east and the south-east) and low-sequestration regions.

3.2. Explanatory variables

3.2.1. Commodities and input prices

Crop, livestock, wood and grassland prices were gathered from three main sources (cf table 1).

Crop, cattle, milk, hog and fertilizer prices at the country level over the 1990-2007 period are taken

from Eurostat (2011). Wood prices were obtained from the Laboratoire d’Economie Forestière (LEF).

Grassland prices were taken from AGRESTE (2011a). All prices are deflated using a Harmonized

Index of Consumer Prices from OECD (2011) when needed.

In order to limit multicollinearity issues among crop price variables, the prices of five crops (wheat,

barley, rapeseed, maize, sunflower) were grouped into one price index using agricultural areas at the

Departement level from AGRESTE (2011b) as weights. The crop price index variable pcropit for

Departement i at year t is :

pcropit =

∑5
c=1 pctS cit∑5

c=1 S cit
(8)

where c is the index for crop, pct is the price of crop c in year t and S cit is the area of crop c in

Departement i in year t. A similar approach was used to compute the cattle price index (pcattit) from

cattle and milk prices using dairy and non-dairy animal numbers as weights :

6TERUTI data are not available to us before 1993 and for the years between 2004 and 2006. Despite the availability of
data for the 2007-2009 period, we chose not to include them in our sample because of consistency issues between the two
sets of data.
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pcattit =
pnon−dairy

t Nnon−dairy
it + pmilk

t Ndairy
it

Nnon−dairy
it + Ndairy

it

(9)

where Nnon−dairy
it and Ndairy

it are non-dairy and dairy cattle numbers, in Departement i in year t.

pnon−dairy and pmilk are non-dairy cattle and milk price in year t, respectively. As a consequence,

pcropit and pcattit vary over both space and time. All prices are converted into indexes (year 2000 =

100). Summary statistics on prices variables are reported in table 1.

Table 1: Explanatory variables sources and description

variable Source Mean Std.dev. Spatial resolution

crop prices pct Eurostat country
crop areas S cit Agreste Departement
crop price index pcropit (1) 116.23 24.20 Departement

cattle prices pnon−dairy
t Eurostat 109.46 21.90 country

milk prices pmilk
t Eurostat 98.01 7.95 country

dairy cattle numbers Ndairy
it Agreste 48.97 56.48 Departement

non-dairy cattle numbers Nnon−dairy
it Agreste 178.07 153.01 Departement

cattle price index pcattit (1) 106.86 18.05 Departement

hogs prices phogst Eurostat 102.63 17.77 country
wood prices pwoodit LEF 101.85 19.24 Departement
N fertilizer prices p f ertt Eurostat 104.54 11.11 country
grassland prices pgrasit Agreste 103.29 25.15 Departement

Spatial clusters no/HH/HL/LH/LL (2)

EMNITR cl1i (1) 900/252/18/36/396 Departement
EMMANU cl2i (1) 1170/162/0/0/270 Departement
EMFERM cl3i (1) 1134/198/0/0/270 Departement
EMUTCF cl4i (1) 954/324/0/18/306 Departement
EMAGRI cl5i (1) 1170/180/0/0/252 Departement
ENET cl6i (1) 1062/252/0/0/288 Departement

(1): own calculations (See text).
(2): numbers of observations for each modality of the spatial clusters.

Price changes may not affect in the same way the various activity variables and the correspond-

ing emission categories. Estimating one model for each emission category allows us to separate the

effects of price changes on each emission category. We also estimate models for total agricultural

emissions (EMAGRI) and total net emissions (EMNET) in order to compare the combined effects of

price changes on aggregated emissions to the case where each source is isolated.

3.2.2. Spatial clusters

The exploratory spatial data analysis of French GHG sources and sinks from AFOLU conducted in

a previous study Chakir et al. (2011) showed strong evidence of global and local spatial autocorrelation
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for each emission category and for total net emissions throughout the period. Results from this study

are used to capture information about local spatial autocorrelation among Departements. For each

emission category m, spatial clusters of Departements clmi are constructed:

• clmi = HH if emissions m in i are high and i is surrounded by high-emission Departements;

• clmi = LL if emissions m in i are low and i is surrounded by low-emission Departements;

• clmi = LH if emissions m in i are low and i is surrounded by high-emission Departements;

• clmi = HL if emissions m in i are high and i is surrounded by low-emission Departements;

• clmi = no if there is no significant spatial autocorrelation.

These clusters were computed using the cumulative emissions over the period. They are therefore

constant over time. Table 1 reports, for each emission category, the number of observations for each

modality of the spatial cluster variable.

4. Results

In order to compare the estimations and to evaluate the gains associated to allowing for spatial

correlation and individual heterogeneity, four estimators are considered for each equation ymit:

1. The pooled OLS which ignores individual heterogeneity and spatial correlation.

2. The RE (Random effect) estimator which takes into account random individual heterogeneity

but ignores spatial correlation.

3. The SEM (Spatial Error Model) estimator which takes into account the autoregressive spatial

error autocorrelation but ignores individual heterogeneity.

4. The RE-SEM estimator which takes into account spatial error autocorrelation as well as random

individual heterogeneity.

Equations for emissions EMNITR, EMMANU, EMFERM, EMAGRI are estimated over the 1990-

2007 period using a logarithm transformation of the dependent variables and of the price variables.

The coefficients associated to each price variable have thus a straightforward interpretation as the price

elasticity of the corresponding emission category. Given the unavailability of data for EMLUCF and

EMNET after 2003, equations for these two emissions are estimated over the 1993-2003 period. In

addition, as these two emission categories have both positive and negative values, they were estimated

without any log transformation of the variables.
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4.1. Tests of specification

Hausman (1978) test statistic based on the difference between the fixed effects and the random

effects estimators is used to analyze the consistency of the RE estimator. We use in this paper the joint

and the conditional LM tests developed by Baltagi et al. (2003) for error correlation as well as random

individual effects. The test hypotheses and results are reported in table 2.

The χ2
k statistics (k is the number of regressors that are not constant over time) for the Hausman

test are not statistically significant at 1% for each emission category. The null hypothesis is not

rejected which confirms that the RE estimator is consistent for each emission category. The joint test

for spatial error correlation and random effects (T1) as well as the conditional tests for spatial error

correlation (T2) and random individual effects (T3) are significant at 1% for each emission category

(except (T3) for EMLUCF). This justifies the choice of a model taking into account both spatial error

autocorrelation and random individual heterogeneity (RE-SEM).

Table 2: Specification tests

Tests Hypothesis EMNITR EMMANU EMFERM EMAGRI EMLUCF EMNET

HT H0: RE is more efficient χ2
4 = 0.50 χ2

3 = 0.02 χ2
3 = 0.00 χ2

4 = 0.00 χ2
5 = 0.22 χ2

7 = 0.57
H1: RE is inconsistent (0.97) (1.00) (1.00) (1.00) (1.00) (1.00)

T1 H0: σ2
µ = λ = 0 11551.83 13414.47 13475.52 13135.13 2974.10 3943.52

H1: σ2
µ , 0 or λ , 0 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

T2 H0: λ = 0 (ass σ2
µ ≥ 0) 15.64 16.62 16.02 15.37 2.15 7.23

H1: λ , 0 (ass σ2
µ ≥ 0) (0.00) (0.00) (0.00) (0.00) (0.02) (0.00)

T3 H0: σ2
µ = 0 (allowing λ , 0) 4.81 2.70 4.67 4.11 0.82 4.94

H1: σ2
µ > 0 (allowing λ , 0) (0.00) (0.00) (0.00) (0.00) (0.21) (0.00)

For tests T1 to T3, the values reported are the lagrange multiplier statistics of the tests, p-values are between brackets.

4.2. Estimations results

Estimation results are reported in tables 3 to 5. For all emission category, results from both the RE

and the RE-SEM models confirm the existence of random individual heterogeneity as the parameter

φ =
σ2
µ

σ2
v

is significant at the 1% level. Moreover, the spatial autocorrelation parameter λ is also sig-

nificant (at the 1% level) for both the SEM and the RE-SEM models. This confirms the results of the

specifications tests and suggests that the RE-SEM7 estimator suits the best our data.

We now turn to the economic interpretation of the results based on the RE-SEM estimator. For

each individual emission category, crop prices have a positive and significant effect on the correspond-

ing emissions (significance level of at least 5%). Higher crop prices tend to increase the per-hectare

7To measure the goodness-of-fit of the RE-SEM model, we calculate the counterpart of the R2 of an OLS regression
model to the spatial panel model (Elhorst, 2009). We have also calculated an alternative goodness-of-fit measure to the R2

which is the squared correlation coefficient between actual and fitted values.
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Table 3: Estimations results for emissions from enteric fermention (EMFERM) and manure management and spreading
(EMAMNU).

Dependant variable: ln(EMFERM) Dependant variable: ln(EMMANU)
(N = 89, T = 18) (N = 89, T = 18)

OLS RE SEM RE-SEM OLS RE SEM RE-SEM

Intercept -1.36∗∗ -1.32∗∗∗ -1.49 -1.25∗∗∗ -1.74∗∗∗ -1.51∗∗∗ -1.80∗∗∗ -1.5∗∗∗

(0.565) (0.095) (1.080) (0.097) (0.533) (0.092) (0.445) (0.099)
ln(pcropi,t−1) 0.037 0.069∗∗∗ -0.015 0.068∗∗∗ -0.068 0.064∗∗∗ -0.098 0.047∗∗

(0.223) (0.016) (0.269) (0.024) (0.210) (0.018) (0.220) (0.023)
ln(pcatti,t−1) 0.047 0.024∗ 0.094 0.003 0.185 0.059∗∗∗ 0.216 0.061∗∗∗

(0.188) (0.014) (0.231) (0.020) (0.178) (0.015) (0.193) (0.019)
ln(phogsi,t−1) 0.050 0.032∗∗ 0.072 0.039∗ 0.129 0.073∗∗∗ 0.140 0.086∗∗∗

(0.183) (0.013) (0.239) (0.020) (0.173) (0.015) (0.185) (0.019)
clmi = LL -1.60∗∗∗ -1.60∗∗∗ -1.27∗∗∗ -1.60∗∗∗ -1.42∗∗∗ -1.42∗∗∗ -1.31∗∗∗ -1.42∗∗∗

(0.047) (0.196) (0.059) (0.165) (0.044) (0.185) (0.041) (0.185)
clmi = HH 1.12∗∗∗ 1.12∗∗∗ 1.15∗∗∗ 1.12∗∗∗ 1.37∗∗∗ 1.37∗∗∗ 1.33∗∗∗ 1.37∗∗∗

(0.053) (0.223) (0.062) (0.188) (0.054) (0.229) (0.059) (0.229)

λ 0.226∗∗∗ 0.438∗∗∗ 0.113∗∗∗ 0.272∗∗∗

(0.021) (0.028) (0.018) (0.031)
φ 191∗∗∗ 160∗∗∗ 139∗∗∗ 149∗∗∗

(29.4) (18.3) (21.5) (23)
R2 0.55 0.22 0.58 0.55 0.56 0.31 0.56 0.56
corr2 0.55 0.56
logLik -1070.10 2287.79 -1011.50 2072.42

Significance levels: ∗∗∗: 0.01, ∗∗: 0.01, ∗: 0.1. Standard deviations in parentheses.

Table 4: Estimations results for emissions from synthetic fertilizer use (EMNITR) and aggregated agricultural emissions
(EMAGRI).

Dependant variable: ln(EMNITR) Dependant variable: ln(EMAGRI)
(N = 89, T = 18) (N = 89, T = 18)

OLS RE SEM RE-SEM OLS RE SEM RE-SEM

Intercept -3.68∗∗ -1.56∗∗∗ -4.07∗∗∗ -1.63∗∗∗ -0.24 -0.14 -0.34 -0.12
(1.430) (0.407) (0.84) (0.565) (0.922) (0.143) (1.130) (0.173)

ln(pcropi,t−1) 0.760∗∗∗ 0.437∗∗∗ 0.942∗∗∗ 0.532∗∗∗ 0.162 0.148∗∗∗ 0.169∗∗ 0.151∗∗∗

(0.198) (0.053) (0.229) (0.075) (0.127) (0.017) (0.083) (0.022)
ln(p f erti,t) -0.277 -0.180∗∗∗ -0.226 -0.160∗ -0.090 -0.083∗∗∗ -0.065 -0.081∗∗∗

(0.234) (0.063) (0.144) (0.091) (0.151) (0.020) (0.185) (0.026)
ln(pcatti,t−1) -0.516∗∗ -0.146∗∗ -0.671∗∗∗ -0.224∗∗ -0.039 -0.019 -0.020 -0.027

(0.233) (0.063) (0.254) (0.089) (0.150) (0.020) (0.114) (0.026)
ln(pgrasi,t) 0.577∗∗∗ -0.021 0.571∗∗∗ -0.044 0.095 0.062∗∗∗ 0.055 0.058∗∗∗

(0.198) (0.058) (0.199) (0.059) (0.127) (0.019) (0.126) (0.019)
clmi = LL -1.48∗∗∗ -1.48∗∗∗ -1.25∗∗∗ -1.48∗∗∗ -1.20∗∗∗ -1.20∗∗∗ -0.88∗∗∗ -1.20∗∗∗

(0.054) (0.221) (0.063) (0.221) (0.040) (0.168) (0.031) (0.168)
clmi = HH 0.71∗∗∗ 0.71∗∗∗ 0.61∗∗∗ 0.71∗∗∗ 1.09∗∗∗ 1.09∗∗∗ 1.06∗∗∗ 1.09∗∗∗

(0.064) (0.261) (0.069) (0.262) (0.046) (0.193) (0.054) (0.193)
clmi = LH -0.02 -0.03 -0.10 -0.03

(0.152) (0.624) (0.148) (0.623)
clmi = HL 0.22 0.20 0.41∗∗ 0.20

(0.213) (0.873) (0.207) (0.873)

λ 0.19∗∗∗ 0.361∗∗∗ 0.236∗∗∗ 0.256∗∗∗

(0.0145) (0.0311) (0.0192) (0.0319)
φ 13∗∗∗ 14.6∗∗∗ 55∗∗∗ 58.2∗∗∗

(2.02) (2.26) ( 8.5) (8.99)
R2 0.42 0.14 0.45 0.42 0.52 0.2 0.56 0.52
corr2 0.42 0.52
logLik -1506.75 -162.09 -774.03 1563.59

Significance levels: ∗∗∗: 0.01, ∗∗: 0.01, ∗: 0.1. Standard deviations in parentheses.
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Table 5: Estimations results for net emissions from land use, land use change and forestry (EMLUCF) and aggregated net
AFOLU emissions (EMNET).

Dependant variable: EMLUCF Dependant variable: EMNET
(N = 89, T = 11) (N = 89, T = 11)

OLS RE SEM RE-SEM OLS RE SEM RE-SEM

Intercept -2.6∗∗∗ -2.69∗∗∗ -2.3∗∗∗ -2.29∗∗∗ -1.51∗ -1.79∗∗∗ -0.965 -1.46∗∗∗

(0.264) (0.172) (0.322) (0.24) (0.774) (0.296) (0.944) (0.555)
pwoodt 5.69e-05 0.00243∗ 0.00027 0.00126 -0.0046 0.0022 -0.00248 0.000743

(0.00177) (0.00131) (0.00181) (0.00109) (0.00282) (0.00139) (0.00281) (0.00112)
pcropi,t−1 0.00763∗∗∗ 0.00673∗∗∗ 0.00475∗ 0.00345∗ 0.0162∗∗∗ 0.00934∗∗∗ 0.0165∗∗∗ 0.00356

(0.00246) (0.00117) (0.00286) (0.00191) (0.00536) (0.00169) (0.00632) (0.00231)
p f erti,t 0.00508 0.00477∗∗∗ 0.00605 0.00411

(0.00529) (0.00164) (0.00658) (0.00386)
pcatti,t−1 0.00363∗ 0.0033∗∗∗ 0.00411∗ 0.00439∗∗ 0.000645 0.00311∗∗ -0.00166 0.00534∗∗

(0.00209) (0.000983) (0.00243) (0.00187) (0.00396) (0.00124) (0.00475) (0.00211)
phogsi,t−1 -0.00304 -0.000106 -0.00793 0.00307

(0.00426) (0.00133) (0.00484) (0.00261)
pgrasi,t 0.000264 0.00018 0.000204 4.61e-06 0.00196 0.000305 0.00176 -1.15e-05

(0.000837) (0.000413) (0.000822) (0.000298) (0.00132) (0.000432) (0.00127) (0.000305)
yr2000 0.275∗∗∗ 0.265∗∗∗ -0.114 0.225∗∗ 0.314∗∗ 0.315∗∗∗ -0.249 0.317∗∗∗

(0.0917) (0.0428) (0.115) (0.0971) (0.157) (0.0486) (0.193) (0.115)
clmi = LL -1.14∗∗∗ -1.16∗∗∗ -1.04∗∗∗ -1.14∗∗∗ -1.94∗∗∗ -2.01∗∗∗ -1.85∗∗∗ -1.98∗∗∗

(0.0678) (0.195) (0.0743) (0.199) (0.109) (0.332) (0.125) (0.336)
clmi = HH 1.57∗∗∗ 1.57∗∗∗ 1.46∗∗∗ 1.56∗∗∗ 3.87∗∗∗ 3.89∗∗∗ 3.47∗∗∗ 3.88∗∗∗

(0.0646) (0.19) (0.0728) (0.195) (0.111) (0.35) (0.135) (0.354)
clmi = LH -0.297 -0.319 -0.411∗ -0.324

(0.239) (0.705) (0.235) (0.704)

λ 0.171∗∗∗ 0.666∗∗∗ 0.22∗∗∗ 0.681∗∗∗

(0.0168) (0.0285) (0.0189) (0.0276)
φ 3.56∗∗∗ 5.97∗∗∗ 9.46∗∗∗ 16.3∗∗∗

(0.575) (0.965) ( 1.5) (2.61)
R2 0.56 0.24 0.57 0.56 0.67 0.3 0.69 0.67
corr2 0.56 0.67
logLik -798.86 -397.77 -1231.57 -469.43

Significance levels: ∗∗∗: 0.01, ∗∗: 0.01, ∗: 0.1. Standard deviations in parentheses.
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emission rate for each category. Among agricultural emission sources, crop prices have the greatest

impact on emissions from the use of synthetic fertilizer EMNITR with a price elasticity of emission

of 0.53. Estimated elasticities for EMMANU and EMFERM are around ten times lower. The positive

effect of crop prices on EMNITR may be explained by the fact that (i) higher crop prices may increase

the profitability of crop production inducing a substitution from other activities to crop production and

thus a higher N-fertilizer use and (ii) higher crop prices may encourage farmers to increase N appli-

cations on existing crops. The former effect may also explain the positive effect of crop prices on

emissions from land use change, as an increase in the relative profitability of crops may induce land

conversion into cropland (in particular, from grassland to cropland). The resulting effect of crop prices

on EMAGRI and EMNET is as expected positive but not significant for EMNET.

Fertilizer prices have a negative and significant effect on EMNITR and EMAGRI. The elasticity

of fertilizer prices on EMNITR is however more than three times lower than that of crop prices on the

same emission category.

Contrary to crop prices, the sign of the coefficients associated to cattle prices differ between emis-

sion categories. As expected, higher cattle prices tend to increase emissions from manure and enteric

fermentation. The effect of cattle prices on EMFERM is however not significant for the RE-SEM

model. On the contrary, higher cattle prices tend to lower emissions from the use of synthetic fertil-

izers. This positive effect may result from (i) the conversion of croplands into pastures (increasing

need for pastures as the profitability of animal production increases) and (ii) the substitution of syn-

thetic fertilizers to organic fertilizers. The results suggest that the latter effect dominates. Lastly, the

positive effect of cattle prices on total net emissions suggest that the combined effects cattle prices on

each individual emission source is positive. Hogs prices have a positive and significant effect on both

emission sources related to animal production (EMMANU and EMFERM).

The dummy for the year 2000 has a significant and positive effect on emissions from land use

change (at 5%) and consequently on total net emissions (at 1%). This result is not surprising as the

1999 storms resulted in a large amount of carbon released in the atmosphere.

Wood prices seem to have no significant impact on land use and land use change decisions. Grass-

land prices have no significant effect on individual categories and on total net emissions.

For each emission category, the HH and LL modalities of the cluster variables have a significant

effect on emissions. As expected, Departement for which clmi = HH (clmi = LL) tend to have

significantly (at 1%) higher (lower) values of emissions than the others.
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4.3. Predictions

Following Baltagi and Li (1999) who derived the best linear unbiased predictor (BLUP) correction

term when both error components and spatial autocorrelation are present, the prediction from our

model reduces to

ŷRE−S EM
iT+S = xiT+S β̂

RE−S EM + Tφ
N∑

j=1

δ ju j., (10)

where φ =
σ2
µ

σ2
v
, δ j is the jth element of the ith row of V−1 with V = TφIN +(B′B)−1 and u j. =

∑T
t=1 û jt/T ,

with ûit = yit − xitβ̂.

For the RE model8, the spatial autocorrelation correction is null and the BLUP reduces to:

ŷRE
iT+S = xiT+S β̂

RE +
Tσ2

µ

Tσ2
µ + σ2

v
u j. (11)

For the OLS and the SEM estimators the BLUP correction term is null so that the BLUP equals to

a simple pooled OLS predictor computed as

ŷOLS
iT+S = xiT+S β̂

OLS , (12)

and for the SEM model the BLUP reduces to:

ŷS EM
iT+S = xiT+S β̂

S EM. (13)

The BLUP associated to each estimator using the same sample periods as the ones used in the

estimations. Predictions are then compared with observed data available for 2008 for agricultural

emission sources and 2007 for EMLUCF and EMNET. The Root Mean Square of Error (RMSE) are

reported in table 6. For each emission category, the RMSE is of the same magnitude for the first three

estimators (OLS, RE, SEM) but it markedly drops for the BLUP related to the RE-SEM estimator.

This suggests that the RE-SEM estimator provides more accurate predictions. The performance of the

RE-SEM predictor is however much greater for agricultural emission sources (RMSE between 0.03

and 0.13) than for emissions from LUCF and total net emissions (RMSE of 0.52 and 0.63).

The RE-SEM BLUP is then used to predict the effects on each emission category of a doubling of

crop prices. All explanatory variables, excluding crop prices, are taken at their observed values for the

last sample year, i.e 2007 for EMNITR, EMMANU, EMFERM and EMAGRI and 2003 for EMLUCF

and EMNET. The predicted values of the changes in emissions are reported on Figure 1.

8See Baltagi and Li (2006) for more details.
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Table 6: Root Mean Square Error for the four predictors

OLS SEM RE RE-SEM

EMNITR 0.23 0.23 0.23 0.10
EMMANU 0.29 0.29 0.28 0.04
EMFERM 0.24 0.25 0.24 0.03
EMAGRI 0.58 0.59 0.58 0.13
EMUTCF 0.74 0.75 0.74 0.52
EMNET 1.10 1.15 1.11 0.63

Figure 1 shows that a 100% increase of crop prices (holding all other variables constant) leads to

an increase of about 33% of EMNITR and 7% of EMMANU and EMFERM at the national level. This

illustrates the higher price-responsiveness of emissions from the use of synthetic fertilizer relative to

animal-related emissions. Changes in emissions are not equally spatially distributed. The effects of

a crop price increase seems to be higher in Departements for which observed 2007 emissions were

higher. The total agricultural emissions increase is of about 11.4 MtCO2eq which corresponds to a

12% increase compared to 2007 emissions. Using the reduced form of the abatement supply curve

found in (De Cara and Jayet, 2011, table 2), compensating this increase in emissions would require a

tax of approximately 37 C.tCO2eq−1.

The results of Figure 1 show that the effect of a crop prices increase on EMLUCF (and conse-

quently on EMNET) are much greater compared to agricultural emissions. This suggests that price

variability may have an important impact on emissions from land use and land use changes and thus on

the mitigation potential that can be associated to AFOLU. These results may however be interpreted

with caution as the accuracy of our predictions for emissions from land use and land use changes is

much lower than for agricultural emissions.

5. Conclusion

The objective of this paper was to assess the effects of input and output prices on GHG sources/sinks

from AFOLU at the Departement level in France. To this end, various estimation methods have been

applied to reduced-form models of the relationship between emissions and prices, for each AFOLU

emission categories as well as for aggregated emissions. Results of the specifications tests show that

the random effect spatial error models (RE-SEM) estimator suits the best our data and leads to more

accurate predictions than alternative estimators (OLS, random error, spatial error models). These

results confirm the importance of taking into account both spatial error autocorrelation and random

regional effects.
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Our main empirical findings are threefold. First, prices do have an impact on both the level and

spatial distribution of emissions. Although expected, this result underlines the importance of taking

into account spatial structure and decomposition by emission category. Second, the price effects are

more significant for individual emission categories than for total net emissions from AFOLU. Sepa-

rating emission sources and sinks thus allows us to decompose effects of that might be masked at the

aggregated level. Third, the price effects are larger for N2O emissions due to synthetic fertilizer use

than for other agricultural sources. This emission category seems to be more price responsive than

animal-related GHG. Our results suggest that prices may have an important impact on both the level

and decomposition of the mitigation potential associated to AFOLU. This effect should be thus taken

into account in the design of public policies aimed at reducing emissions or enhancing carbon sinks

in these sectors.

The use of a reduced form rather has the advantage to summarize the complex interactions that

may exist between the various emission categories, whilst keeping the approach relatively simply.

However, it does not permit to explicitly describe the causal chain from economic land-use decisions

to AFOLU emissions. Further research is needed in this direction.
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A.

Figure 2: Evolution of agricultural and net emissions during the 1990-2007 period (in tons of CO2eq per hectare)
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B.

Figure 3: Spatial distribution of the four emission categories in tCO2-eq per hectare

(a) Emission from the use of synthetic fertilizers (b) Emissions from enteric fermentation

(c) Emission from manure management and spreading (d) Net emissions from LULUCF

Emissions are expressed in tCO2-eq per hectare emitted over 1990-2007 for EMNITR, EMFERM and EMMANU and over
1993-2003 for EMLUCF. Negative values correspond to a sink of CO2 whereas positive values correspond to a source of
emissions.
Source : AGRESTE (2011b); CITEPA (2009); UNIFA (2009); TERUTI; own calculations.
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Figure 4: Total net emissions (agriculture + LULUCF) (sum over 1993-2003 in tCO2-eq per hectare)

Lecture : Emissions nettes totales (cumul 1993-2003 en tCO2-eq par hectare)
Champ : Départements français entre 1993 et 2003.
Source : AGRESTE (2011b); CITEPA (2009); UNIFA (2009); enquête TERUTI; calculs des auteurs.
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