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Stéphane De Cara∗
International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria and Institut National de la
Recherche Agronomique (INRA), UMR Economie Publique INRA INA-PG, Grignon, France

Elodie Debove
Institut National de la Recherche Agronomique (INRA), UMR Economie Publique INRA INA-PG, Grignon,
France

Pierre-Alain Jayet
Institut National de la Recherche Agronomique (INRA), UMR Economie Publique INRA INA-PG, Grignon,
France

This version: July 1, 2005

Running title: GWP and multi-GHG price instruments

∗ Corresponding author: IIASA, Forestry Program, A-2361 Laxenburg, Austria, email:
decara@iiasa.ac.at, Tel: +43 2 236 807 557, Fax: +43 2 236 807 599



GWP and multi-GHG price instruments 2

Global Warming Potentials and multi-greenhouse gas price instruments

Abstract. The paper revisits the concept of Global Warming Potentials (GWP) from an

economic perspective. Multi-greenhouse gas issues are analyzed using a general, dynamic,

welfare-maximizing framework. The results confirm that the GWP induces a bias when used

as the economic equivalence rule between greenhouse gases. In the linear damage case, we

underline the trade-off between the time horizon used in GWP computation and the social

discount rate. The standard definition of the GWP is shown to implicitly define different

discount rates for different gases. A geometric interpretation of the second-best GWP-based

emission tax is provided. It is shown that the change in the emission mix is such that total CO2

equivalent emissions are the same under first-best and GWP-based emission tax regimes only

if damages are linear. In the quadratic damage case, emission trajectories and steady-state

solutions are compared under the first-best and GWP-based emission tax regimes.

Keywords: Global Warming Potential; Climate Change; price instruments.

JEL codes: Q25.
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Introduction

The ratification of the Kyoto Protocol by Russia cleared the way for the adoption of the

so-called ’Kyoto flexibility instruments’. On November 18, 2004, the UNFCCC1 registered

the first Clean Development Mechanism (CDM): Brazil NovaGerar Landfill Gas to Energy

(EcoSecurities, Ltd, 2004).2 Although carbon dioxide is the most scrutinized greenhouse gas

(GHG) in the climate change debate, CO2 emissions are only indirectly targeted in this very

first project. More surprisingly, the project proposes to emit –rather than abate– CO2. Indeed,

the project entails collecting landfill methane to produce electricity. The key point in this

project lies in the fact that methane’s Global Warming Potential (GWP) is 21 times higher3

than that of CO2, while the combustion reaction transforms each ton of methane into only

2.75 tons of CO2 (or 44/16, the molar mass ratio). Hence, just through the conversion from

a higher- into a lower-GWP gas, total GHG emissions are reduced approximately eightfold

(from 21 to 2.75) on a CO2-equivalent basis. This example is far from being anecdotal; a

number of projects currently under review by the UNFCCC reap advantage from the same

kind of between-gases arbitrages.

The above example illustrates well the importance of non-CO2 gases for the design of

economic instruments. The multi-pollutant nature of climate change has prompted a fierce

debate over the agreement architecture, especially with regard to the inclusion of non-CO2

GHGs and the delineation of the ’Kyoto basket of gases’ (Article 5.3 of the Kyoto Protocol).

Empirical studies have clearly established that multi-gas mitigation strategies economically

dominate CO2-only strategies. The underlying intuition is easy to understand: multi-gas

targets make it possible to take advantage of the most cost-effective abatement options, and

thus lower the cost of achieving any given reduction. The magnitude of the estimated cost-

savings, although varying with models and assumptions, unambiguously favors multi- over

single-gas strategies (Hayhoe et al., 1999; Reilly et al., 1999).

The equivalence rule used in those studies for GHG comparison purposes is based on the

GWP index. From the above example, one easily foresees the key role that this index plays in

1 United Nation Framework Convention on Climate Change
2 The interested reader is referred to http://cdm.unfccc.int/Projects for further information about this

and other CDM projects.
3 Using the 1995 IPCC Assessment Report’s estimate as prescribed in the Kyoto Protocol. In its third

Assessment Report, the IPCC has revised methane’s GWP to 23.
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setting ’relative prices’ for greenhouse gases. Direct climate impact and atmospheric lifetime

greatly vary from one gas to another. The GWP reflects the time-integrated radiative forcing

resulting from one emission pulse of any GHG relative to that of CO2 (Intergovernmental

Panel on Climate Change, 2001). The Kyoto Protocol, which made its use mandatory in the

reporting of States’ emissions, gave the GWP a status with regard to international law that

few other physics concepts can claim.

Is the GWP index the right indicator to compare greenhouse gases from an economic

perspective? In short, the answer is no. The concept behind GWP raises a number of issues.

A number of these issues are equally raised when dealing with any indicator that attempts

to aggregate “apples and oranges” (OECD, 2002, replace here apples by carbon dioxide, and

oranges by methane). Some authors have pointed out the simplified representation of the

climate system the GWP relies on, questioning the relevance of this metric as an accurate

climate change indicator (Smith and Wigley, 2000; Fuglestvedt et al., 2003; Godal, 2003).

But the most fundamental criticisms are based on economic arguments. A small but grow-

ing amount of research has pointed out fundamental shortcomings in the GWP definition

whenever this concept is used in economic assessments of multi-gas mitigation strategies.

The lack of discounting, the overlooking of non-linearities in damage functions, and arbitrary

time horizons are the most often raised criticisms (Reilly and Richards, 1993; Kandlikar,

1996; Bradford, 2001; Manne and Richels, 2001; Tol et al., 2003). Arguably, these shortcom-

ings lead to distortions in the economic value of abatements in various greenhouse gases, in

particular between short- and long-lived greenhouse gases. As a direct consequence, policies

based on the GWP concept are accused of misleading the time path of resource allocation in

abatement efforts.

Yet, since its introduction in the first IPCC assessment report in the early nineties (Lashof

and Ahuja, 1990), the vast majority of assessments and emission reports that had to deal with

multi-greenhouse gas issues have relied on the GWP. The GWP still stands as a key-concept

in the toolbox of policy-makers and climate scientists alike. In fact, the GWP has proved both

more effective and more operational as a negotiation basis than any alternative index found in

the literature. One possible reason for this may be that, rightfully or not, it is easier to reach

an agreement on an index summarizing the radiative forcings and atmospheric lifetimes, which
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are viewed by the Parties as well-documented and scientifically-sound, “hard” facts, than on

an index that heavily depends on an economic measure of climate-change related damages

and long-term discount rates.

The question addressed in this paper is: To what extent can GWPs be used in the design of

climate change economic instruments? The paper thus investigates the analytical properties

of GWP-based economic instruments. Two main routes have been followed in the economic

literature in order to tackle the GWP issue (see for instance Delucchi and Lipman, 2003).

The first approach consists in analyzing least-cost trajectories needed to meet a given target,

typically expressed in terms of concentration (e.g. stabilization), aggregate radiative forcing,

or temperature change ceiling. The cost-effectiveness approach has the advantage of ruling

out major difficulties regarding the economic evaluation of climate damages and mitigation

benefits. Total costs of achieving a given target can then be computed using alternative

indexes, and the costs be compared against those associated with GWP (Manne and Richels,

2001; O’Neil, 2003; Shine et al., 2005; Sarofim et al., 2005). The second approach in contrast

aims at solving the“Grand Problem”(Bradford, 2001) of deriving optimal paths that minimize

the sum of abatement and climate damage costs (Reilly and Richards, 1993; Kandlikar, 1996;

Moslener and Requate, 2001, for instance).

The model developed in this paper is more akin to the latter approach, as optimal trajecto-

ries of various GHGs are analytically investigated. However, it departs from previous literature

in several respects. First, abatement costs are not explicitly modeled as in cost-minimizing

models (e.g. Kandlikar, 1996; Moslener and Requate, 2001), but rather represented by the

induced substitutions in consumption patterns and their impacts on (non-environmental)

welfare. This more general formulation allows in particular to account for non-separable

abatement cost functions. Second, we analyze the trade-off between the GWP’s time horizon

and the social discount rate. This discussion would not be possible in the framework retained

by Kandlikar (1996) for instance, where the social planner’s time horizon is assumed to be the

same as the one used in the computation of the GWP. Third, the focus is less on alternative

metrics to the GWP than on the properties of GWP-based economic instruments.

The paper is organized as follows. Section 1 reviews and discusses the main arguments

supporting the critical views of the GWP. Section 2 presents the general analytical framework
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used to address multi-greenhouse gas issues in a dynamic, welfare-maximizing setting. The

main features of the analytical general solution of the dynamic system are discussed. In

section 3, the general expression of the optimal GWP-based emission tax is derived. In the

particular case of a linear relationship between damage and concentrations, we underline the

fundamental trade-off between the time horizon chosen in the computation of GWP and the

discount rate (section 4). This analysis shows that an un-discounted measure based on a finite

time horizon implicitly defines different discount rates for different gases. Section 5 presents

the solution under a quadratic specification of the non-environmental welfare and constant

emission factors. Section 6 examines the case of quadratic damage.

1. Global Warming Potentials: An economic perspective

When multi-gas targets are under consideration, they have to be formulated in a common

unit, e.g., in tons of CO2-equivalent. A metric is thus needed to compare GHGs. Fuglestvedt

et al. (2003) provide an excellent and comprehensive survey of existing and alternative metrics

of climate change. Among these metrics, the GWP is by far the most commonly used. This

index was originally derived from a methodology developed for comparing ozone-depleting

substances (Lashof and Ahuja, 1990).

It is worth having a closer look at the way this index is computed. Following the In-

tergovernmental Panel on Climate Change (2001), the definition of the concept writes as

follows:

GWPj,CO2(T̂ ) =

∫ T̂
0 zn

j (t)θj(t)dt
∫ T̂
0 zn

CO2
(t)θCO2(t)dt

(1)

where zn
j (t) and zn

CO2
(t) represent the remaining atmospheric quantities of gas j and CO2,

respectively, at time t after an emission pulse of one mass unit at time t = 0. θj(t) and θCO2(t)

represent the instantaneous radiative forcing of gas j and CO2, respectively. The GWP thus

represents the time-integrated radiative forcing of gas j relatively to that of CO2 over a fixed

and finite time horizon T̂ .

At first glance, the GWP concept might be regarded as a matter of interest for climate

scientists and not for economists. As a matter of fact, this metric plays a crucial economic
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role, which is well illustrated in the example discussed in the introduction: it determines the

relative ’prices’ at which reductions in various GHGs can be traded.

In an insightful analysis of the debate over the relevance of the GWP index, O’Neil (2000)

has identified two major difficulties. The first difficulty has to do with the selection of a

criterion/variable in the long causality chain that proceeds from emissions to the economic

costs of climate damages (see also Fuglestvedt et al., 2003). The GWP concept is centered

around an early link in this chain (radiative forcing). In contrast, alternative indexes found

in the economic literature (Reilly and Richards, 1993; Kandlikar, 1996; Manne and Richels,

2001) are based on the ratio of the marginal social values of concentration in each GHG.

Hence, they are built up from the end of the causality chain (marginal abatement costs

and/or marginal economic damages). It should therefore come as no surprise that indexes

based on measures of different variables lead to diverging results as soon as the link between

those variables does not reduce to a linear relationship.

One conclusion drawn from this discussion could be that conceptual difficulties arise less

from the GWP definition itself than from its use as an economic equivalence rule. The GWP

simply cannot accurately describe variables it was not meant to measure in the first place,

unless very restrictive assumptions are made on the subsequent links in the causality chain

identified by O’Neil. This is the main argument used by Kandlikar (1996), who highlights

the implicit economic assumptions needed to have equivalence between the GWP and the

optimal ratio of the respective shadow prices. These assumptions are a zero discount rate

as well as linearity in the relationship between temperature change and economic damages.

Kandlikar argues that these assumptions are hardly justified in the case of climate change.

Again, this is just the reflect of the discrepancy between the very purpose of GWP, that is

the equivalence at one particular link, and its use in welfare analyses.

The second difficulty lies in how the variable of interest should be measured. Are instan-

taneous measures appropriate? Should time-integrated measures be preferred? If the latter is

chosen, what is the appropriate time horizon? Acknowledging the essentially dynamic nature

of climate change, most indexes, such as Kandlikar’s or the GWP, rely on time-integrated

measures. In contrast to the GWP index, Kandlikar uses a discounted measure. Arguably, the

use of an un-discounted and constant metric distorts the time-path allocation of abatements
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between short- and long-lived GHGs (see also Tol et al., 2003 and Michaelowa, 2003). As a

result, un-discounted, constant metrics induce sub-optimal abatement paths.

To summarize, three main critical arguments are invoked against the use of GWP in

economic analyses: (i) implicit assumption whereby radiative forcing and economic damage

are linearly linked, (ii) absence of discounting, (iii) arbitrary time horizon. This text addresses

these three criticisms in a stepwise manner. After the presentation of the general model

(sections 2 and 3), we assume that (i) holds in order to focus on the last two criticisms

(sections 4 and 5). We finally relax the linearity assumption in section 6.

2. Analytical framework: A multi-gas, optimal control problem

2.1. Formulation of the general problem

Consider an economy with a set of (private) goods (i = 1, . . . , m). Equilibrium quantities

at time t is denoted by the m-vector txt = (x1t, . . . , xmt). Consumption and/or production

causes emissions of a set of gases (j = 1, . . . , n) in quantities tε(xt) = (ε1(xt), . . . , εn(xt)).

Greenhouse gases are stock pollutants. The change in atmospheric concentration in gas j

(between current and pre-industrial levels) is denoted by zjt, with tzt = (z1t, . . . , znt). The

equation of motion of zj is given by the following equation:

żjt = żn
j (t) + ża

j (t) = −τjtzjt + εj(xt) (j = 1, . . . , n) (2)

The two terms in equation (2) reflect the natural and anthropogenic components, respectively,

in the accumulation of gas j in the atmosphere. Through natural absorption processes, zjt

decreases over time at rate τjt. In other words, if anthropogenic emissions are zero, atmo-

spheric concentrations return to pre-industrial equilibrium levels at rate τjt. In general, τjt

is not constant over time as it results from complex interactions between chemical species

in the atmosphere, and might depend on the composition of the atmosphere itself. However,

little is known about the functional form of τjt. In the rest of this paper, τj will be assumed

constant. Average lifetime (or e-folding time) of gas j in the atmosphere is thus 1/τj .

The non-environmental part of welfare is measured through the function U(xt). U(.) is

assumed to be continuously differentiable. It is assumed that there exists a unique vector

xBAU
t (BAU as in business-as-usual) that maximizes U(.). For all values of x that will be
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examined thereafter, we assume that U(.) is increasing with respect to all xi (U ′
xi

> 0 for

xi < xBAU
i ).

The impact on climate is summarized through the change in average global temperature,

denoted by θ(z). Generally speaking, the impact on average temperature depends on the

concentrations of all gases. Each gas j contributes to the increase in temperature through its

radiative forcing θ′zj
(z), which is assumed to be positive4.

Global economic damages are denoted by D(θ)5. Following a commonly used assumption

in the literature, D(.) is assumed to be increasing and convex with respect to θ (D′(.) > 0

and D′′(.) ≥ 0). Climate change is assumed to be a ‘pure’ global externality: agents do

not spontaneously internalize the effect on climate that their economic decisions induce.

In addition, we will assume, that climate change causes an economic loss on agents that

additively reduces total welfare. The social discount rate is denoted by δ. The problem faced

by a (risk-neutral) social planner who intends to maximize total welfare over an infinite

planning time horizon can be written as follows:

maxxt

∫ ∞

0
[U(xt)−D(θ(zt))]e−δtdt subject to (2) (3)

Forming the (current) Hamiltonian of the problem, the optimality conditions are given by

(the time index t is implicit and omitted):

x ∈ arg maxx H = U(x)−D(θ(z))−
n∑

j=1

λj(−τjzj + εj(xt)) (4a)

λ̇j = δλj +
∂H
∂zj

(j = 1, . . . , n) (4b)

Let H[U,x] and H[εj ,x] be the m × m-Hessian matrices of U and εj , respectively. The

concavity of the Hamiltonian with respect to the command variable x is ensured by the fact

that the Hessian matrix of H with respect to x is negative definite. Hence, we need the

matrix
(
H[U,x] −

∑n
j=1 λjH[εj ,x]

)
to be non-singular and definite negative. All λj are non-

negative at the optimum6. Therefore, standard assumptions on the concavity of U(.) and
4 Indeed, in a general approach, it would be possible to also deal with positive externalities, not only with

negative ones. This would be the case, for instance, for carbon sequestration, which offsets some of the emissions
and thus contributes to lower the pressure on climate. In this case, sequestered carbon can be accounted for as
new ‘gas’ (negative emissions). The reasoning would remain unchanged, insofar as business-as-usual equilibrium
quantities of carbon-sink enhancing goods should be provided in lower than optimal quantities.

5 This representation relies on a simplified description of the climate system, whereby change in the radiative
budget and average surface temperature are linearly linked through a constant climate sensitivity parameter
(Intergovernmental Panel on Climate Change, 2001).

6 Note that the expressions of the Hamiltonian (4a) and of the equations of motion of shadow prices (4b)
are modified compared to their canonic expression in such a way that all λj are positive. In fact, the state
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εj(.) (H[U,x] negative definite and H[εj ,x] positive semi-definite) are sufficient to ensure that

the Hamiltonian is concave with respect to the command variables. The necessary conditions,

whereby all derivatives of H with respect to the command variable are zero, are thus also

sufficient to meet the static optimality conditions (4a):

φi(λ,x) = U ′
xi

(x)−
n∑

j=1

λjε
′
j,xi

(x) = 0 (i = 1, . . . , m) (5)

Equations (5) imply that, at each point in time, the marginal impact on welfare of any good i

is equal to the sum of marginal emission content of xi in all gases weighted by the respective

shadow prices. At the optimum, λj thus reflects the marginal social value of emissions in

gas j.

Equations (5) locally define a vector-valued function f(.) such that x∗ = f(λ) in the

neighborhood of λ∗, solution of (4a)–(4b). Hence, f(.) implicitly defines the optimal levels

of consumption in all goods as a function of their social value. The conditions for using

the implicit function theorem are met since the Jacobian matrix of φ with respect to x,

J[φ,x](λ) = H[U,x] −
∑n

j=1 λjH[εj ,x], is non-singular in λ∗ (see above). J[f,λ] represents the

marginal change in consumption levels as a function of the shadow prices and is obtained

through totally differentiating (5) with respect to x and λ:

J[f,λ](λ
∗) =


H[U,x](x

∗)−
n∑

j=1

λ∗jH[εj ,x](x
∗)



−1

tJ[ε,x](x
∗) (6)

The marginal effect of a change in the shadow prices is twofold: (i) consumed quantities x are

adjusted in order to maximize U(.) according to H[U,x]; and (ii) marginal emission content

of each good is modified as x changes, and these changes have also to be valued at the

corresponding shadow prices. These two effects are embedded in the matrix in parenthesis.

Note that the m-vector tJ[ε,x](x∗)λ represents the marginal emission profile evaluated at

prices λ. The i-th entry of this vector is the total social value of emissions caused by good i

at the margin.

f(λ) represents the social demand in private goods as a function of the ‘prices’ of greenhouse

gases. Marginal abatement costs could thus be derived from equation (6) as the marginal loss

in the non-environmental part of welfare resulting from a change in consumption levels.

variable here (concentrations) has a negative impact on the objective function. The canonic co-state variable
attached to the equation of motion of zj should thus also be negative. Without loss of generality, λj are chosen
hereafter as the opposite of the standard shadow prices.
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They have to be compared with the marginal social value of GHGs. Unlike cost-minimizing

models (Kandlikar, 1996; Moslener and Requate, 2001), the formulation presented here is

more general and, in particular, does not require any specific assumption about abatement

costs separability. Note that f(λ) depends on the marginal substitution rates between all

goods through H[U,x].

By replacing x by f(λ) in equations (4b) and combining them with equations (2), the

dynamics of shadow prices and concentrations can be rewritten as follows:

żj = −τjzj + εj(f(λ)) (j = 1, . . . , n) (7a)

λ̇j = (δ + τj)λj −D′(θ(z))θ′zj
(z) (j = 1, . . . , n) (7b)

2.2. Linearization and steady-state

Let ∆[−τ ] and ∆[δ+τ ] be the n × n-diagonal matrices with (−τj) and (δ + τj) on the j-th

component of the first diagonal, respectively. By taking the first-order Taylor’s expansion of

(7a)–(7b), the differential system is linearized in the neighborhood of any point (z̄, λ̄):
(

ż
λ̇

)
≈

(
∆[−τ ] A(λ̄)
B(z̄) ∆[δ+τ ]

)
·
(

z
λ

)
+

(
a(λ̄)
b(z̄)

)
(8)

where

A(λ̄) = J[ε,x](f(λ̄))J[f,λ](λ̄) and a(λ̄) = ε(f(λ̄))−A(λ̄)λ̄ (9a)

B(z̄) = −D′′.J[θ,z](z̄)
tJ[θ,z](z̄)−D′.H[θ,z](z̄) and b(z̄) = −D′J[θ,z](z̄)−B(z̄)z̄ (9b)

A(λ̄) reflects the linear approximation of the optimal change in emissions resulting from a

marginal change in the shadow prices, while B(z̄) represents the change in damage caused by

a marginal change in the concentrations. The steady state (z∞, λ∞) of system (7a)–(7b) –if

it exists– is defined by ż = 0 and λ̇ = 0. Generally speaking, it can be iteratively computed

by solving the linearized system (8) in the neighborhood of (z∞, λ∞).

2.3. Shadow price ratio dynamics

From the equation of motion for λj (7b), it can be easily seen that λ∗j represents the integral

over time of the flows of marginal damages caused by gas j, discounted by the discount

rate (δ) and accounting for the absorption rate (τj). Hence, together with equation (5), this
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equation is the translation in a dynamic framework of the standard static result, whereby

the marginal social value of emissions should be equal to the marginal damage. The ratio of

the shadow prices of two arbitrarily chosen gases j and k thus sets the relative social value

of gas j relatively to that of gas k. If gas k is chosen as the reference, the first-best tax on

emissions in gas j that decentralizes the optimum is thus
λ∗jt

λ∗
kt

(gas k taken as the reference).

In all generality, this ratio is not constant over time.

Differentiating the ratio with respect to time and using equation (7b) yields:

˙(
λj

λk

)
=

λj

λk
(τj − τk) +

D′(θ(z))θ′zk
(z)

λk

(
λj

λk
− θ′zj

(z)

θ′zk
(z)

)
(10)

The evolution of the shadow price ratio over time is governed by two important quantities:

(i) the difference in natural absorption rates (τj − τk), and (ii) the ratio of average impact

on temperature (θ′zj
(z)/θ′zk

(z)). From equation (10), one also sees that if natural absorption

rates are identical, the sign of the change in the shadow price ratio is only driven by the

relative position of λj/λk with θ′zj
(z)/θ′zk

(z).

Assume, without loss of generality, that τj ≥ τk. That is, gas j is shorter-lived than gas k.

Since λj and λk are positive, the first term in equation (10) is positive. Economic valuation of

the damage is assumed to be increasing with respect to the average impact on temperature,

and the marginal impact of concentration in gas k on temperature is positive. Therefore, the

positivity of the second term in equation (10) depends on the relative position of shadow

prices and radiative forcing ratios. If gas j, in addition to be shorter-lived than gas k, has

a sufficiently lower direct impact on temperature –that is θ′zj
(z)/θ′zk

(z) is sufficiently small–

then λj/λk is increasing over time.7 If radiative forcing of gas j is large enough relatively to

that of gas k, the sign of (10) is ambiguous. This illustrates the possibility of a non-monotonic

evolution of the shadow price ratio as found in Moslener and Requate (2001).

3. Multi-gas, GWP-based emission tax

In the problem described in (3), each gas is accounted for separately. Hence, in this case,

there is no specific need to use a metric to compare or aggregate GHGs. Previous section

7 Note that in the case of a constant radiative forcing ratio, if at any time λj/λk is greater than θ′zj
(z)/θ′zk

(z),
then λj/λk is also increasing over time.
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has shown that the appropriate aggregator of the various GHGs is the n-vector of optimal

shadow prices λ∗. The components of λ∗ are neither necessarily constant nor monotonic over

time.

Assume now that a metric has been agreed upon and has been made mandatory so that

the social planner cannot use it as a command variable. This metric converts emissions in any

gas j into gas 1-equivalent. Let tγ = (1, γ2, . . . , γn) be the n-vector of conversion coefficients

of gas j into gas 1. All entries of γ are assumed to be constant over time8. Total emissions in

tons of gas 1-equivalent are tγ · ε(x) =
n∑

j=1

γjεj(x). Let pt be the emission tax expressed in

dollars per ton of gas 1-equivalent.

The maximization of the non-environmental part of the welfare leads to the following

conditions:

U ′
xi

(xt) = pt

n∑

j=1

γjε
′
xi,j(x) (i = 1, . . . , m) (11)

Using an argument similar to the one used in section 2.1, equations (11) implicitly define

the m-vector of consumption x̃t as a vector-valued function g(ptγ), which depends on the

vector of emission tax on all gases converted into tons of gas 1-equivalent (ptγ). The problem

faced by the social planner is thus modified as follows:

max
pt

∫ ∞

0
[U(g(ptγ))−D(θ(z))] e−δtdt (12a)

s.t. żjt = −τjzjt + εj(g(ptγ)) (j = 1, . . . , n) (12b)

The necessary conditions of optimality of the modified problem are:

pt ∈ arg max
pt

H̃ = U(g(pγ))−D(θ(z))−
n∑

j=1

µj(−τjzj + εj(g(pγ))) (13a)

µ̇j = δµj +
∂H̃
∂zj

(j = 1, . . . , n) (13b)

where tµ = (µ1, . . . , µn) is the vector of the (modified) shadow prices attached to equations

of motion of the state variable in problem (12a). Differentiating H̃ with respect to pt, using

equation (11), and solving for pt yields:

pt =
tγ

(
J[ε,xt](g(ptγ))J[g,ptγ](ptγ)

)
µ

tγ
(
J[ε,xt](g(ptγ))J[g,ptγ](ptγ)

)
γ

(14)

8 Observe that γ encompasses the standard definition of the GWP as a particular case, but also covers any
kind of constant multi-GHG metric. As an illustration, CO2-only strategies can also be analyzed using this
framework (in this case, γj = 0 for all j ≥ 2).



GWP and multi-GHG price instruments 14

where J[g,ptγ](ptγ) denotes the Jacobian matrix of g.

Equation (14) gives the general expression of the emission tax based on the equivalence rule

γ. If for all j, γj is the standard GWP of gas j, then pt is the optimal GWP-based emission tax.

The optimal tax is locally defined as a linear combination of the optimal values of the shadow

prices µ in the modified problem. The j-th component of the n-vector tγ ·
(
J[ε,x] · J[g,pγ]

)

is the marginal change in emissions of gas j converted into gas 1-equivalent resulting from

a change in the emission tax. The numerator in (14) is therefore equal to the marginal

change in gas 1-equivalent emissions evaluated at current shadow prices µ. The denominator

can be interpreted as a normalization factor. It also represents the marginal change in gas

1-equivalent emissions, but evaluated through the given equivalence rule γ9.

Equation (14) –when combined together with the definition of the Jacobian matrix of g(.),

J[g,ptγ]– provides an interesting geometric interpretation of the optimal γ-based emission tax.

If tJ[ε,xt] has full column rank –that is, the emission profile in any gas j (the j-th column of

tJ[ε,xt]) cannot be obtained as a linear combination of the other gases’ emission profiles– then

the matrix appearing both at the numerator and the denominator in equation (14) is definite

positive. Therefore, this matrix defines a norm ||.|| in IRn. Let cos(., .) denote the cosine of

the angle between two vectors in IRn defined according to the bilinear form associated to this

norm. Then the optimal tax can be expressed as follows:

pt =
||µt||
||γ|| . cos (γ,µt) (15)

The optimal γ-based emission tax can be decomposed into a scaling factor ( ||µt||
||γ|| ), and

a measure of the angle between γ and µt. The first factor is an aggregate measure of how

much of the total social value of emissions is actually captured in γ. The second factor

summarizes the bias induced by γ, i.e. how (in-)accurately γ reflects the relative social value

of all individual gases.

The computation of ||µt||, ||γ||, and cos (γ,µt) in equation (15) relies on a norm that

weights the components of µt and γ according to the marginal impact on welfare of changes

in xt. In this general framework, this norm is defined locally10. Therefore, two effects drive
9 The fact that there appears a normalization factor in the expression of pt should come as no surprise.

Indeed, γ is defined as a relative equivalence rule. That means that it should always be possible to change
the reference gas (from carbon dioxide to methane for instance) without changing the optimal solution of the
program (13a)–(13b). Obviously, this implies a corresponding change in the value of pt.

10 Further assumptions made in sections 5 and 6 restrict the analysis to the case where the weights used in
||.|| are constant with respect to consumption levels.
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the changes in the optimal γ-based emission tax over time: (i) marginal impact on welfare

are modified as xt changes, which imply changes in the weights defining ||.||, and (ii) changes

in µt the social value of individual GHGs.

Using g(pγ), the differential system can be rewritten as follows:

żj = −τjzj + εj(g(pγ)) (j = 1, . . . , n) (16a)

µ̇j = (δ + τj)µj −D′(θ(z))θ′zj
(z) (j = 1, . . . , n) (16b)

Following the same reasoning as above, the modified differential system is linearized in the

neighborhood of any point (z̄, µ̄) and written in matrix form:

(
ż
µ̇

)
≈


 ∆[−τ ]

˜A(µ̄)γ tγ ˜A(µ̄)

tγ ˜A(µ̄)γ
B(z̄) ∆[δ+τ ]




(
z
µ

)
+

(
ã(µ̄)
b(z̄)

)
(17)

where Ã(µ̄) and ã(µ̄) are similar to the definitions given in (9a), in which J[g,pγ] replaces

J[f,λ]. At this level of generality, it is difficult to be more conclusive about the dynamics of

the system without taking more specific assumptions about the functions.

4. Linear damage and linear temperature change

Consider first the case of linear economic damage and linear change in temperature with

respect to concentrations. These assumptions, although highly unrealistic in the case of

climate change, have the advantage of simplifying the comparison between the GWP and

the optimal shadow price ratio. Indeed, these assumptions rule out the first major difficulty

discussed in section 1. This enables to focus on the two remaining shortcomings of the GWP,

namely the arbitrary in the choice of the time horizon and the lack of discounting. To illustrate

this, the following assumptions are made:

D(θ) = α.θ with α > 0 (H1)

θ(z) = tθ · z with θ = (θj) ∈ IR+n (H2)

Under assumptions (H1) and (H2), equation (7b) reduces to a first-order linear differential

equation with a constant, positive right-hand side. Solving this equation for gas j and gas k
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and using the corresponding transversality conditions, the optimal shadow price ratio is:

λ∗j
λ∗k

=
αθj

δ + τj
/

αθk

δ + τk
=

θj(δ + τk)
θk(δ + τj)

(18)

Very important is the fact λ∗j/λ∗k is constant over time under (H1) and (H2). Because of

the assumed linearity of the link between concentrations and damage, the social value of gas

j relative to gas k does not change over time. Introducing (H2) in equation (1), the GWP

–also constant over time by definition– writes:

GWPj,k(T̂ ) =
θjτk(1− e−τj T̂ )

θkτj(1− e−τkT̂ )
(19)

From equation (19), it is easily seen that the GWP differs from the ratio of optimal shadow

prices for at least two reasons: (i) the chosen time horizon (T̂ ) which appears in the expression

of the GWP, but not in the shadow price ratio, and (ii) the discount rate (δ) that only affects

the shadow price ratio.

Moreover, the sign of the difference between the GWP and the ratio of optimal shadow

prices only depends on the natural decay rates (τj and τk), the discount rate (δ) and the time

horizon used in the computation of the GWP (T̂ ). Under (H1)-(H2), it does not depend on

the marginal damage (α). Nor does it depend on the radiative forcing ratio ( θj

θk
).

PROPOSITION 1. Consider any 2-uple of gases j and k such that τj 6= τk and τj , τk > 0.

Under (H1) and (H2) and for a given time horizon T̂ > 0:

i) There exists a unique positive discount rate δ̂j,k(T̂ ) such that GWPj,k(T̂ ) = λ∗j/λ∗k.

ii) If τj > τk, then GWPj,k(T̂ ) < λ∗j/λ∗k ⇐⇒ δ > δ̂j,k(T̂ ).

If τj < τk, then GWPj,k(T̂ ) < λ∗j/λ∗k ⇐⇒ δ < δ̂j,k(T̂ ).

Proof. See appendix

Proposition 1 gives interesting insights into the difference between GWP- and welfare-

based indexes. It shows that this difference depends heavily on the discount rate and on the

time horizon used in the computation of the GWP index. The proposition also illustrates the

trade-off between those two quantities.

The results of proposition 1 are illustrated on Figure 1. Figure 1.a shows the natural evolu-

tion of concentrations in four gases. Gas 2, 3 and 4 are characterized by average lifetimes of 12
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Figure 1. Trade-off between discount rate and time horizon (linear damage and linear temperature response)

(dotted), 114 (dashed) and 3,600 (solid) years, respectively. These lifetimes can be associated

with CH4, N2O, and SF6 respectively (Intergovernmental Panel on Climate Change, 2001).

Gas 1 is assumed to have an average lifetime of 150 years (thick). This lifetime lies in the

range given for CO2
11. For illustrative purposes, the chosen range of atmospheric lifetimes

is deliberately very wide. As an illustration, the remaining fraction after 200 years of a

unitary emission pulse of gas 2 is almost unnoticeable (order of magnitude 10−8), whereas it

is approximately 0.95 for gas 4.

Figure 1.b illustrates the trade-off between the time horizon T̂ and the social discount rate.

Gas 1 is taken as the reference. If T̂ is fixed, for example at 100 years (the commonly used

convention in the IPCC), then part (i) of the proposition indicates that there exists a unique

value of the discount rate such that GWP2,1(100) = λ∗2
λ∗1

. For the shortest-lived gas, δ̂2,1(100)

would thus be approximately 0.8%. For a 500-year time horizon, it drops to 0.02%. As for

gas 4 –the longest-lived gas in our example– the characteristic values of the discount rate

are higher (1.79% and 0.26% for 100 and 500 years, respectively). Since gas 4 is longer-lived

than gas 2, a higher discount rate is needed to ensure the equality between the GWP and the

shadow price ratio. It also follows that longer time horizons imply lower characteristic values

of the discount rate. As the curves on Figure 1.b do not cross, one sees that there exists no

2-uple (δ, T̂ ) such that all GWPs could be equal to the respective shadow price ratio as soon

as n > 2.

11 Indeed, the behavior of CO2 in the atmosphere is much more complex and cannot be satisfactorily sum-
marized through a constant decay rate, as the ’speed’ of exchanges between different carbon pools (terrestrial
sinks, upper oceans, deep oceans, atmospheric) varies widely. More sophisticated approaches approximate
the dynamics of carbon as a sum of exponential. This simplification, however, does not affect the general
conclusions drawn in this section.
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Conversely, one could set the discount rate and derive the time horizon that ensures

equality between the GWP and the respective shadow price ratio. For commonly used values

of the discount rates in long-term environmental issues, for example lower than 3%, the time

horizons such that the GWP is equal to the optimal shadow price ratio appear reasonably

close to the 100-year mark. For instance, for a discount rate of 1.5%, the time horizon that

ensures equality between the shadow price ratio and the GWP is 67.4, 101.37, and 117.3 years

(gas 2, 3, and 4, respectively). However, the computation of the GWP is quite sensitive to the

value of the time horizon T̂ . Computing the GWP of gas 2 (resp. 4) over a time horizon of 67.4

(resp 117.3) years instead of 100 years indeed yields a 34% (resp. 5%) increase in the index.

In addition, for very low discount rates sometimes advocated in the case of climate change,

the difference in ’equivalent’ time horizons widens between short- and long-lived GHG.

It is often argued that the GWP index over-estimates the social value of shorter-lived gases

and undervalues longer-lived gases (O’Neil, 2003). Part (ii) of proposition 1 re-examines the

validity of this assertion and highlights the crucial role that δ and T̂ play in this statement.

For a given time horizon T̂ , the GWP index overvalues (undervalues) gases that are shorter-

lived (longer-lived) than the reference gas if the discount rate is small. The reverse statement

holds if the discount rate is large. Results for a 100-year time horizon are shown on Table I.

The first four rows correspond to the case examined in Figure 1 (τ1 = 1/150). Ranges of

discount rate values for which the GWP is higher (lower) than the shadow-price ratio are

indicated with a ’+’ (’-’). From Table I, one sees that the assertion whereby the GWP index

overvalues shorter-lived gases only holds if the discount rate is small. For larger (but still

reasonable) discount rates, the GWP overvalues shorter-lived gases and undervalues longer-

lived gases. The last eight rows of Table I examine the sensitivity of this result with respect

to two alternative assumptions regarding the decay rate of the reference gas.

What does this have to say about the validity of the GWP as a climate change index? First,

this confirms the fact that the GWP is not an adequate metric whenever it is used to measure

the economic equivalence between gases. This result is in line with findings from Kandlikar

(1996)12. The linear case examined here greatly simplifies the link between radiative forcing

and economic damage. This supposedly reduces the bias between impact-based and welfare-

12 In his paper, Kandlikar assumes that the time horizon of the social planner’s program is the same as the
one used in the computation of the GWP. This restriction is not made in the present paper.
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Table I. Discount rate ranges for which the GWP over- (+) or under-estimates (-) the relative social value
of greenhouse gases (linear damage, linear temperature change, T̂ = 100)

Gas Decay rate (τj) Value of the discount rate δ

]0, δ̂2,1(100)[ ]δ̂2,1(100), δ̂3,1(100)[ ]δ̂3,1(100), δ̂4,1(100)[ ]δ̂4,1(100), +∞[

τ1 = 1/150 ]0, 0.84%[ ]0.84%, 1.52%[ ]1.52%, 1.79%[ [1.79%, +∞[

Gas 2 1/12 + - - -

Gas 3 1/114 + + - -

Gas 4 1/3600 - - - +

τ1 = 1/50 ]0, 0.43%[ ]0.43%, 1.20%[ ]1.20%, 1.51%[ [1.51%, +∞[

Gas 2 1/12 + - - -

Gas 3 1/114 - - + +

Gas 4 1/3600 - - - +

τ1 = 1/200 ]0, 0.91%[ ]0.91%, 1.57%[ ]1.57%, 1.84%[ [1.84%, +∞[

Gas 2 1/12 + - - -

Gas 3 1/114 + + - -

Gas 4 1/3600 - - - +

based indexes. Notwithstanding, a bias remains, rooting in the lack of discounting and the

arbitrariness of the chosen time horizon.

Second, the results highlight the possible trade-off between the discount rate and the time

horizon used in the GWP computation. One could argue that the choice of the discount

rate is not more arbitrary than the choice of T̂ . The value of the discount rate has prompted

fierce debates among economists, especially for long-term environmental issues such as climate

change. The choice of any value for δ is inter alia contingent to assumptions about future

preferences and productivity of capital. From Figure 1, the 100-year assumption might appear

as a compromise, which implies reasonable implicit values of the discount rate. However,

simple computations show that the GWP is quite sensitive to the time horizon, in particular

for short-lived gases.

Third, the sign of the difference between the GWP of any gas (relative to a reference gas)

and the respective shadow price ratio depends on the discount rate, the chosen time horizon

and the difference in decay rates. Therefore for a given time horizon and a given discount

rate, the GWP index undervalues some gases and overvalues others. Table I shows that, in the

linear case, small changes in the social discount rate may revert the sign of these differences.
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5. Linear damage, constant emission factors, and quadratic welfare

In order to further discuss the evolution over time of the system under (H1) and (H2), more

specific assumptions are needed regarding the analytical form of emission factors and welfare.

In this section, the following assumptions are thus made in addition to (H1) and (H2).

ε(x) = E · x with E = (eji) ∈ IR+n×m (H3)

U(x) = tux− 1
2

txVx with u ∈ IR+m, V ∈ IRm×m symmetric positive definite (H4)

Assumption (H3) simply corresponds to a linear relationship between equilibrium quantities

and emissions, and thus pertains to constant (and positive) emission factors. This assumption

is in line with the use of constant emission factors as prescribed in IPCC inventory reports.

(H4) is a stronger assumption. It corresponds to a linear-quadratic specification of the welfare

function. Such a specification for U(.) involves a linear demand system. In order to meet the

concavity properties discussed in section 2.1 as well as standard properties of the demand

system (symmetry, non-increasing demand functions), V is a symmetric positive definite

m×m-matrix.

Business-as-usual equilibrium quantities are such that they maximize U(x). Under (H4),

these quantities are xBAU = V−1u. For the sake of simplicity, preferences are assumed to

be constant over time. As a direct consequence, business-as-usual equilibrium quantities are

therefore constant over time. Likewise, under (H3) associated emissions –given by εBAU =

ExBAU =
(
EV−1

)
u– are also constant over time. The equation of motion of zj thus reduces

to a first-order linear differential equation with a constant and positive right-hand side. The

right-hand side is defined by total optimal emissions in gas j, denoted by εBAU
j . The business-

as-usual time path of zj is therefore fully characterized by initial concentrations z0:

zBAU
jt = (zj0 −

εBAU
j

τj
)e−τjt +

εBAU
j

τj
(20)

Under (H3) and (H4), business-as-usual concentration of gas j tends to εBAU
j /τj as t

tends to infinity. zBAU
j is monotonically decreasing (resp. increasing) over time if initial

concentration zj0 is greater than (resp. lower than) steady-state concentrations.
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Consider now the evolution of z if damages are taken into account. Optimal emissions ε∗

are computed by introducing (H3) and (H4) in the optimality conditions (5), which yields:

ε∗ = Ex∗ =
(
EV−1

)
u−

(
EV−1 tE

)
λ∗ (21)

(H3) and (H4) imply linear demand functions. Optimal equilibrium quantities x∗ thus depend

linearly on λ. It is easy to verify that this is also the case for the reduction in consumption

relative to the business-as-usual situation (xBAU − x∗ =
(
V−1 tE

)
λ∗) and the optimal

abatement (εBAU − ε∗ =
(
EV−1 tE

)
λ∗).

As shown in section 4, λ∗ is constant over time if (H1) and (H2) hold and λ∗j is equal to

αθj/(δ+τj). This in turn implies constant emissions under (H4). Therefore, under assumptions

(H1)-(H4), the equation of motion of zj reduces to a first-order linear differential equation

with a constant and positive right-hand side. The right-hand side is defined by total optimal

emissions in gas j, denoted by ε∗j . The solutions of this equation therefore take a form similar

to (20), in which εBAU
j is replaced by ε∗j . Therefore, the ’first-best’ time-path of concentration

in gas j (z∗j ) is monotonically decreasing (resp. increasing) if initial concentrations are greater

than (resp. lower than) steady-state concentrations ε∗j/τj .

Consider now the γ-based emission tax. Introducing (H3) and (H4) into equation (14)

yields:

pt =
tγ

(
EV−1 tE

)
µ̃

tγ
(
EV−1 tE

)
γ

(22)

The γ-based emission tax is a linear combination of the shadow prices µj . The coefficients

in this linear combination depend on the conversion coefficients, the marginal substitution

rates between all goods, and the emission factors. If rank(E)= n, the geometric interpretation

provided in the general case by equation (15) still holds. This interpretation is however

simpler, since the definition of norm ||.|| is constant with respect to consumption levels under

(H3)-(H4).

If (H1)-(H4) hold, emissions under a γ-based emission tax regime (ε̃) are:

ε̃ = Ex̃ = EV−1u−
tγ

(
EV−1 tE

)
µ̃

tγ
(
EV−1 tE

)
γ

(
EV−1 tE

)
γ (23)

Under (H1) and (H2), the differential system characterizing µ̃ is the exactly same as the

one characterizing λ∗. The solutions are thus identical. Therefore, we have µ̃ = λ∗. As a direct
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consequence, emissions under a γ-based emission tax regime are constant over time and the

time-path of concentrations takes a form similar to the one described by equation (20). The

results of this section are summarized in the following proposition.

PROPOSITION 2. Under (H1)-(H4), the following results hold for any γ > 0:

i) tλ∗(εBAU − ε∗) ≥ 0 (>0 if rank(E) = n) and tλ∗(εBAU − ε̃) ≥ 0.

ii) tλ∗(ε̃− ε∗) ≥ 0

iii) tγ(ε∗ − ε̃) = 0

Proof. See appendix

Proposition 2 focuses on aggregated emissions. How should emissions under BAU, ’first-

best’ and ’γ-based emission tax’ regimes be compared? Two natural candidates are competing

as aggregator. The first one is the vector of optimal shadow prices λ∗. Emissions in all gas are

weighted by the respective shadow prices. The total social value of emissions under the three

regimes can thus be compared. Part (i) of proposition 2 indicates that total emissions under

’first-best’ and ’γ-based emission tax’ regimes are lower than business-as-usual emissions

when aggregated according to the respective social value of each GHG. This should come as

no surprise as climate change related damages are ignored in the business-as-usual scenario,

whereas they are accounted for under the two alternative regimes. Both regimes thus induce

an environmental amelioration compared to the laissez-faire situation. Part (ii) proposition 2

indicates that the total value of first-best emissions tλ∗ · ε∗ is lower than the total value

of emissions under any γ-based emission tax regime tλ∗ · ε̃. In other words, the γ-based

emission tax induces a net social loss.

Part (iii) of the proposition is more surprising. The second natural candidate as an ag-

gregator is the γ-equivalence rule. Result (iii) indicates that total emissions –if aggregated

according to γ– are the same under the ’first-best’ and ’γ-based emission tax’ regimes. This

result is strongly related to the linear damage assumption, as it requires λ∗ = µ̃. It holds

regardless of the choice of (non-negative) γ. Stated differently, a GWP-based emission tax

leads to the same total emissions expressed in CO2-equivalent as in the first-best situation.

Geometrically, this means that ε̃ belongs to the hyperplane of IRn defined by tγ ·ε = tγ ·ε∗.
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The γ-based emission tax regime involves changes in emissions in individual gases compared

to the first-best situation, but these changes are compensated when aggregated according

to γ. Emissions in some gases necessarily increase, while emissions in other gases decrease

(expressed in tons of gases).

This result is graphically illustrated in the case n = 2 (Figure 2). Consider that the solution

of program (3) leads to first-best emissions ε∗ = (ε∗1, ε∗2). Total emissions in gas 1-equivalent

are tγ · ε∗. All points (ε1, ε2) along the line CD (slope −γ2

γ1
) are characterized by the same

total emissions in tons of gas 1-equivalent. Imagine that the optimal shadow price ratio λ∗2
λ∗1

is smaller than γ2

γ1
. That is, the equivalence rule overvalues gas 2 relatively to gas 1. From

(ii), we know that emissions under γ-based regime ε̃ = (ε̃1, ε̃2) are necessarily above the line

EF (slope −λ∗2
λ∗1

). (iii) imposes that ε̃ lies somewhere on the line CD. Therefore, ε̃ thus lies on

the segment AC. It follows that ε̃1 is greater than ε∗1 and ε̃2 is lower than ε∗2. Consequently

abatement in the overvalued GHG (here gas 2) is greater than optimal, whereas abatement

in undervalued GHG (gas 1) is lower than optimal. One can apply the same reasoning to the

case λ∗
′

2

λ∗′1
> γ2

γ1
.

Consider that γ is the vector of the standard GWPs. In this case, whether B or B’ situation

prevails depends on the value of the discount rate relative to δ̂2,1(T̂ ) and on the decay rate

of gas 2 compared to that of gas 1 (see proposition 1).

6. Quadratic damage, constant emission factors, and quadratic welfare

6.1. First-best regime

In this section, the linearity assumption regarding the relationship between concentration

and climate-change related damage is relaxed. Assumptions (H2)-(H4) are kept, while (H1)

is replaced by (H1’):

D(θ) =
1
2
βθ2 with β > 0 (H1’)

Under (H1’), the marginal damage is increasing with respect to θ. Therefore, marginal damage

cannot be reduced to a proportional transformation of radiative forcing. D′(θ) depends on θ,

which in turn depends on the levels of concentrations.
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Figure 2. First-best vs γ-based emission tax (linear damage)

Introducing (H1’) and (H2)-(H4) into the linearized differential system (8) yields:
(

ż
λ̇

)
=

(
∆[−τ ] −EV−1 tE
−βθ tθ ∆[δ+τ ]

) (
z
λ

)
+

(
E.V−1u

0

)
(24)

Note first that the differential system is linear under (H1’), (H2)-(H4). Note also that (H1’)

and (H2) imply that b(z̄) is equal to the null n-vector. Finally, remark that, as in previous

section, a(λ̄) is constant over time and equal to business-as-usual emissions.

Let νk (k = 1, . . . , 2n) be the eigenvalues of the 2n× 2n-matrix appearing in system (24)

and Ω the 2n × 2n-matrix of the 2n eigenvectors in columns ωk. The general solution of

system (24) is:

z∗jt =
2n∑

k=1

ωj,k(cke
−νkt +

dk

νk
) for all j = 1, . . . , n (25a)

λ∗jt =
2n∑

k=1

ωn+j,k(cke
−νkt +

dk

νk
) for all j = 1, . . . , n (25b)
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ck are 2n integration constants to be derived from initial concentrations, z0, and transver-

sality conditions. dk is the k-th entry of the 2n-vector d defined as Ω−1
(

EV−1u
0

)
.

In order to exhibit the analytical solution of system (24), we need to diagonalize a 2n×2n-

matrix. The behavior of the general solution of the system depends on the non-singularity of

this matrix (existence of the steady state) and on the sign of the eigenvalues (saddle-point).

6.2. γ-based emission tax regime

The same reasoning can be applied to the γ-based emission tax regime:

(
ż
µ̇

)
=


 ∆[−τ ] −EV−1 tEγ tγEV−1 tE

tγEV−1 tEγ
−βθ tθ ∆[δ+τ ]




(
z
µ

)
+

(
E.V−1u

0

)
(26)

Again, the existence of a steady state and the dynamic behavior of the general solu-

tion depend on the singularity of the matrix appearing in system (26) and the sign of the

eigenvalues.

The comparison of the general solution under first-best and γ-based emission tax regimes

is not as straightforward as it was in the linear case. In particular, the result whereby γ-

aggregated emissions are the same under both regimes does not generally hold as soon as

the damage is not linear with respect to concentrations. In other words, the bias induced

by the use of the γ equivalence rule is twofold: (i) the optimal emission mix is changed

compared to first-best regime; (ii) the change in the emission mix modifies the social value of

individual greenhouse gases in such a way that total γ-equivalent emissions also differ from

their first-best levels.

6.3. Illustration with two gases

We focus on the two-gas case in order to analytically illustrate the properties of the dynamic

system under the first-best and γ-based emission tax regimes.

PROPOSITION 3 (Steady state). In the case of two gases and under (H1’), (H2)-(H4):

i) Both system (24) and system (26) admit a unique steady-state.

ii) Under both regimes, the steady-state is a saddle point.

Proof. See appendix.
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Proposition 3 shows the existence and unicity of the steady state under both regimes.

Moreover, in the case of two gases, the steady-state is shown to be a saddle-point. That is,

two of the eigenvalues characterizing the 4× 4 matrix appearing in system (24) (respectively

(26)) are negative, whereas the two others are positive. Let ν1 and ν2 (respectively ν̃1 and ν̃2)

be the positive eigenvalues, and ν3 and ν4 (respectively ν̃3 and ν̃4) the negative ones. c3 and

c4 (respectively c̃3 and c̃4) –which are the coefficients associated with the negative eigenvalues

in (24) (respectively (26))– are zero along the converging optimal path under the first-best

regime (respectively the γ-based emission tax regime).

PROPOSITION 4 (Steady-state shadow price ratio). In the case of two gases (τ2 > τ1),

under (H1’), (H2)-(H4):

i) The shadow price ratio, taken at the steady-state, is such that: λ∗∞2
λ∗∞1

= µ̃∞2
µ̃∞1

= θ2(δ+τ1)
θ1(δ+τ2) .

ii) A sufficient condition for λ∗∞ ≥ µ̃∞ to hold is θ2τ1
θ1τ2

≤ γ2

γ1
≤ θ2(δ+τ1)

θ1(δ+τ2) (in the case τ2 < τ1,

revert upper and lower bounds). The condition is also necessary if rank(E)= n.

iii) A sufficient condition for
(

z∗∞
λ∗∞

)
=

(
z̃∞

µ̃∞
)

to hold is γ2

γ1
= θ2(δ+τ1)

θ1(δ+τ2) .

Proof. See appendix.

The steady-state shadow price ratios are the same under the first-best regime and a γ-

based emission tax regime (i). This result holds regardless of the choice of γ. The optimal

time-path and the steady-state shadow price of individual gases may differ. Nevertheless, the

shadow-price ratio is preserved in the steady-state. Consequently, the discussion conducted

in section 4 can be applied to the case of quadratic damage. Depending on the respective

decay rates, the value of the discount rate and the time horizon chosen in the computation

of the GWP, the GWP under- or overstates the steady-state social value of gas 2 relatively

to gas 1.

Part (ii) of the proposition indicates when individual shadow prices are higher under

first-best regime than under γ-based emission tax regime. For this to hold, the conversion

coefficient γ2

γ1
has to lie between the steady-state shadow prices ratio (θ2(δ+τ1)

θ1(δ+τ2)) and the infi-

nite time-horizon GWP (θ2τ1
θ1τ2

). The former represents the time-integrated relative marginal

damage over the infinite planning horizon. The latter is the time-integrated relative impact
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on temperature. Stated differently, this means that, if the equivalence coefficient between gas

2 and gas 1 is neither too large nor too small, the steady-state social value of emissions will

be greater in the first-best regime than under the γ-based emission tax regime.

Part (iii) of proposition 4 shows that well-chosen equivalence coefficient can actually lead

to exactly the same steady-state concentrations and individual shadow prices. Again, this

coefficient is θ2(δ+τ1)
θ1(δ+τ2) , the time-integrated relative marginal damage over the infinite planning

horizon. In other words, if the GWP is used as the equivalence factor, then the time horizon

used in the GWP computation should be chosen in such a way that it is consistent with the

social discount rate (see discussion in section 4).

Concluding remarks

To the question: “What would be the optimal equivalence rule between various greenhouse

gases, which differ in their atmospheric lifetime and impact on climate?”, the economic answer

is a welfare-based index that balances marginal economic damages, marginal abatement costs,

and differentiates between short- and long-term impacts, for instance through discounting

long-term damages. Propositions of this nature can be found in the economic literature, and

the purpose of this paper was not to produce a new one.

The main point made in this paper is that economists were simply not asked this question.

For various reasons, the IPCC assessment reports have promoted the use of the GWP index

in multi-greenhouse gas assessments despite well-established shortcomings. The concept has

been as successful as being included in the Kyoto Protocol itself. Economists thus have to

deal with the concept, which will most likely remain as a key-feature in the on-going climate

change negotiations. This paper proposes a general formulation of a GWP-based tax. This tax

takes the equivalence rule as given –be it the GWP or any constant alternative metric. The

general geometric interpretation of this tax explicitly highlights the bias induced by the use of

a constant metric. The bias is proportional to the angle between the equivalence coefficients

of all gases into a reference gas and the respective shadow prices. The measure of this bias

depends on the marginal impacts on welfare of foregone consumption in all private goods.

The results of this paper thus confirm that GWPs do not provide an accurate measure of

the relative economic value of GHGs. In this sense, the results corroborate those obtained from
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previous cost-effectiveness analyses. However, there is a major difference between the welfare-

maximizing framework developed in the present paper and the cost-effectiveness approach.

The latter examines least-cost mitigation strategies needed to meet a given concentration

or temperature target. Consequently, the social value of abating short-lived GHGs –such as

methane– is found to be very low. In short, the conclusion is that methane abatements should

be used as a short-term “brake”, only when approaching the target. Consequently, methane

is found to be overvalued a great deal if attached a price 21 times higher than CO2. We

find that the question of whether the GWP over- or undervalues short-lived GHGs is indeed

more complex when analyzed in a welfare-maximizing framework. The answer to this question

depends heavily on the social discount rate, the time horizon used in the computation of the

GWP, and the respective lifetime of the various gases. In particular, abatements in short-lived

GHGs may actually be more desirable than it is reflected in the GWP if the social discount

rate is sufficiently high.

How does the GWP-based emission tax regime compares to the first-best regime? If climate

change related damages are linear with respect to concentrations, the abatement mix is

modified because of the bias induced by the use of a constant metric (higher abatements

in overvalued GHGs, lower abatements in undervalued GHGs). However, total emissions in

CO2-equivalent are preserved. This does not hold in the more realistic case of convex damage.

In the latter case, the steady-state relative social value is shown to be unchanged. In general,

however, steady-state values of concentrations as well as optimal trajectories are modified

under a GWP-based emission tax regime, relatively to the first-best regime.

The GWP-emission tax can be thought as a second-best instrument. It yields higher welfare

values than the“naive”interpretation of the GWP, whereby non-CO2 GHGs prices are directly

obtained as the marginal value of CO2 emissions times the respective GWP. The optimal

distribution of the abatement burden among sectors and/or countries strongly depends on

how multi-gas issues will be dealt with and on the design multi-gas instruments in further

developments of climate policy. As an illustration, the optimal levels of abatement that need

to be achieved in agriculture –the major emitting sector for non-CO2 gases– is highly sensitive

to the relative prices assigned to methane and nitrous oxide. Policy and economic implications

of the use of the GWP-based emission tax are therefore potentially large.
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This work should be extended in several directions. We only mention two directions for

further research. First, the properties of the GWP-based tax have to be further investigated

from an empirical perspective, using realistic economic and climate parameters. Second, the

sensitivity of the system to uncertainties in key-parameters, such as the marginal damage or

the temperature response to concentrations is still to be tested. The economic intuition is

that the GWP-based emission tax is less sensitive to changes in the value of marginal damage.

This can be tested using the dynamic framework proposed in this paper.
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Appendix

Proof of proposition 1.

i) Existence. If it exists, δ̂j,k(T̂ ) is solution of
λ∗j
λ∗

k
= GWPj,k(T̂ ). Using (18) and (19) yields:

δ̂j,k(T̂ ) =
τjτk(e−τkT̂ − e−τj T̂ )

τj(1− e−τkT̂ )− τk(1− e−τj T̂ )
(27)

Positivity. Let u and v be the numerator and the denominator in (27), respectively.

Consider without loss of generality that τj > τk. We know that in this case u > 0. Consider

the function f(x) = ln(x)

1− 1
x

and the change of variables ln(s) = T̂ τj and ln(t) = T̂ τk. f(x)

is increasing for x ≥ 1. Therefore, τj > τk implies s > t(> 1) and f(s) > f(t). It leads to

ln(s)(1 − 1/t) > ln(t)(1 − 1/s) or T̂ τj(1 − e−τkT̂ ) > T̂τk(1 − e−τj T̂ ). As T̂ > 0, we thus

have v > 0. As δ̂j,k(T̂ ) = δ̂k,j(T̂ ), the proof for τj < τk is straightforward.

Unicity. It is sufficient to show that δ̂j,k(T ) is strictly monotonically decreasing with

respect to T , that is vu′ − uv′ < 0 for all τj , τk, T > 0. Re-arranging and simplifying, it

comes

vu′ − uv′ = τjτk(τj − τk)
[
τje

−τjT (1− e−τkT )− τke
−τkT (1− e−τjT )

]
(28)

Consider g(x) = x ln(x)

1− 1
x

and the same change of variables as above. g(x) is decreasing with

respect to x for x ≥ 1. By the same token as above, τj > τk implies s > t(> 1) and

g(s) < g(t). Consequently, the term in square brackets in (28) is negative. QED.

ii) Using equation (27), we have: (a) if v > 0, then
λ∗j
λ∗

k
> GWPj,k(T̂ ) ⇐⇒ δ > δ̂j,k(T̂ ), and

(b) if v < 0, then
λ∗j
λ∗

k
> GWPj,k(T̂ ) ⇐⇒ δ < δ̂j,k(T̂ ). From (i), we know that the sign of

v is the same as that of u, which is the same as that of (τj − τk). QED.

Proof of proposition 2.

i) The following notations are used: A = EV−1 tE and Ã = Aγ tγA
tγAγ . Under (H4), we

know that V is positive definite. A is thus positive semidefinite (definite if rank(E) = m)

and Ã is positive semidefinite.
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Therefore, tλ∗(εBAU − ε∗) = tλ∗Aλ∗ ≥ 0. Likewise, tλ∗(εBAU − ε̃) =
tγAµ̃
tγAγ

tλ∗Aγ.

As λ∗ = µ̃ and A is symmetric under (H5), we have tλ∗(εBAU − ε̃) = ( tγAµ̃)2

tγAγ ≥ 0.

QED.

ii) We have tλ∗(ε̃ − ε∗) = tλ∗Aλ∗ − tγAµ̃
tγAγ

tλ∗Aγ. As λ∗ = µ̃ under (H1)-(H2) and

A is symmetric and positive semi-definite, (ii) is proved as a direct application of the

Cauchy-Schwarz inequality. QED.

iii) We have tγ(ε̃ − ε∗) = tγAλ∗ − tγAµ̃
tγAγ

tγAγ. As λ∗ = µ̃ under (H1)-(H2), (iii) is

proved. QED.

Proof of proposition 3.

i) Let M (resp. M̃) be the 4 × 4 matrix appearing in system (24) (resp. (26)). The com-

putation of |M| yields |M| = τ1τ2(δ + τ1)(δ + τ2)
[
β tθ

(
∆−1

[τ ] A∆−1
[δ+τ ]

)
θ + 1

]
. As A is

positive semidefinite, |M| > 0. The same applies to the demonstration of |M̃| > 0, with

Ã replacing A. QED.

ii) The computation of the eigenvalues of M yields:

ν1/2 =
1
2

(
δ +

√
δ2 + 2

(
Q±

√
Q2 − 4|M|

))
, ν3/4 =

1
2

(
δ −

√
δ2 + 2

(
Q±

√
Q2 − 4|M|

))

where Q = β tθAθ + τ1(δ + τ1) + τ2(δ + τ2) > 0. ν1 and ν2 are both positive and are

associated with the converging optimal paths. ν3 and ν4 are negative and are associated

with the explosive optimal paths. The same applies to the calculation of the eigenvalues

of M̃, with Ã replacing A. QED

Proof of proposition 4.

i) The block-inversion of M and computation of M−1
( −εBAU

0

)
yield:

(
z∗∞
λ∗∞

)
=




(
∆[τ ] + βA∆−1

[δ+τ ]θ
tθ

)−1
εBAU

∆−1
[δ+τ ]A

(
∆[τ ] + βA∆−1

[δ+τ ]θ
tθ

)−1
εBAU


 (29)
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By using equation (29) for λ∗∞ and re-arranging (in the case n = 2), it comes:

λ∗∞1 =
θ1τ2ε

BAU
1 + θ2τ1ε

BAU
2

|M| β(δ + τ2)θ1 (30)

λ∗∞2 =
θ1τ2ε

BAU
1 + θ2τ1ε

BAU
2

|M| β(δ + τ1)θ2 (31)

The computation of the shadow price ratio follows. The same reasoning applies to µ̃∞2
µ̃∞1

,

with M̃ replacing M. QED.

ii) From equations (30)–(31), one easily sees that µ̃∞1 −λ∗∞1
λ∗∞1

= µ̃∞2 −λ∗∞2
λ∗∞2

=
(
|M| − |M̃|

)
/|M̃|.

The sign of µ̃∞j − λ∗∞j (j = 1, 2) is thus the same as that of |M| − |M̃|.

|M| − |M̃| = βγ2
1θ2

1τ2(δ + τ2)
tγAγ

|A|
(

γ2

γ1
− θ2(δ + τ1)

θ1(δ + τ2)

) (
γ2

γ1
− θ2τ1

θ1τ2

)
(32)

As A is positive semidefinite (definite if rank(E)= n), part (ii) is proved. QED.

iii) The proof simply consists in introducing γ2

γ1
= θ2(δ+τ1)

θ1(δ+τ2) in equation (29), rearranging,

which leads to z∗∞ = z̃∞. QED.






